LESSON PLAN

Course: Grade 1	12 U Advanced Functions	Lesson: <u>2 - 10</u>	
Unit/Chapter: _	Functions	Topic: <u>Unit Review</u>	

homework check: collect unit assignments

unit review: FM 12 p 211 exercise 6.10
Harcourt Mathematics 12 p 28 (chapter 1 review) and p. 67 (chpt 2)

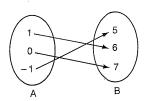
6.10 REVIEW EXERCISE

A 1. If $f(x) = x^2 - 2$ and g(x) = 2(x - 3), state.

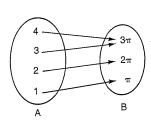
(a) f(3)

(b) g(3)

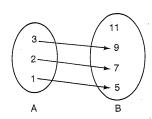
(c) f(-4) (g) g(-2) (k) f(-8)

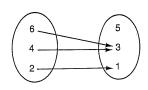

(d) g(8) (h) g(0)

(e) f(1) (i) g(-3) (f) f(10) (j) f(0)

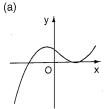

(I) $f(\pi)$

2. State the domain and range of the functions represented by the following arrow diagrams. Which of them are 1-1?

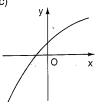

(a)

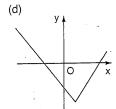

(b)

(c)

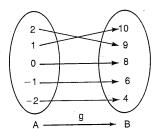


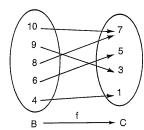
(d)




210 FOUNDATIONS OF MATHEMATICS 12

3. Which of the following figures are graphs of functions? Which of the functions are 1-1?




(c)

4. The functions f and g are defined by the following arrow diagrams.

State.

- (a) f(g(-1)) (c) f(g(1))
- (b) f(g(2))
- (d) f(g(0))
- (e) $g^{-1}(9)$) (g) $g^{-1}(10)$
- (f) $g^{-1}(4)$ (h) g(f(4))

5. In each of the following cases describe how the graph of the given function can be obtained from the graph of f.

(a)
$$y = f(x) - 4$$

(b)
$$y = f(x - 4)$$

(d) $y = f(3x)$
(f) $y = 2f(x + 1)$

$$\int (c) y = 3f(x)$$

$$(d) y = f(3x)$$

$$(c) y = c(c)$$

(f)
$$v = 2f(x + 1)$$

(e)
$$y = -f(x)$$

$$(f) y = 2f(x + 3)$$

(g)
$$y = f(x)$$
 (h) $y = \frac{1}{3}f(x) - 5$

(b)
$$y = 2f(x - f(x)) = f(x) = f(x)$$

B 6. Find the domain of each of the following functions.

(a)
$$f(x) = \frac{1}{x^2 - 4}$$

functions.
(a)
$$f(x) = \frac{1}{x^2 - 4}$$
 (b) $f(x) = \frac{1}{x^2 + 4}$
(c) $f(x) = \sqrt{3 + x}$ (d) $f(x) = \sqrt[3]{3 + x}$

(c)
$$f(x) = \sqrt{3 + }$$

(d)
$$f(x) = \sqrt[3]{3 + x}$$

7. Draw the graphs of the following functions. Use transformations where appropriate. Use transformations where appropriate.

(a) f(x) = 5 - 4x (b) $f(t) = (t - 1)^2 + 3$ (c) $y = \sqrt{x}$ (d) $y = \sqrt{x - 3}$ (e) $f(x) = x^4$ (f) $g(x) = (x + 2)^4 - 1$ (g) y = 3|x - 1| (h) $y = \frac{1}{x + 3}$ (i) $y = \frac{1}{x^2}$ (j) $y = 1 - \frac{1}{x^2}$ (k) $y = 1 - 4x - x^2$ (l) $y = 2x^2 + 4x + 5$

(a)
$$f(x) = 5 - 4x$$

(b)
$$f(t) = (t - 1)$$

(c)
$$y = \sqrt{2}$$

(d)
$$y = \sqrt{x - 3}$$

(e)
$$f(x) = x^4$$

(h)
$$y = \frac{1}{x + 3}$$

(i)
$$v = \frac{1}{3}$$

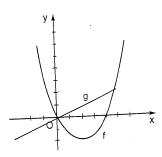
(j)
$$y = 1 - \frac{1}{y^2}$$

$$(k) v = 1 - 4x - x^2$$

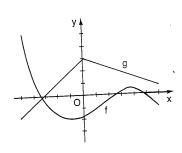
(i)
$$y = 2x^2 + 4x + 5$$

8. Determine whether each of the following functions is even, odd, or neither.

(a)
$$f(x) = 2x^3 + x^5$$


(b)
$$g(t) = t^2 + t^6$$

(c)
$$y = x^3 + 1$$


(d)
$$y = \frac{2}{x^2 + 1}$$

9. Copy the following graphs and use graphical addition to sketch the graph of f + g.

(b)

10. In each of the following cases find $f \circ g$,

$$g \circ f$$
, $f \circ f$, and $g \circ g$.

(a)
$$f(x) = x^2$$
 $g(x) = x - 2$

(a)
$$f(x) = x^2 + g(x) - x - g(x)$$

(b) $f(x) = x^2 + 1$ $g(x) = x^2 - 1$
(c) $f(x) = \sqrt{x}$ $g(x) = x^2$

(d)
$$f(x) = \frac{1}{x+1}$$
 $g(x) = \frac{x}{x-1}$

11. Which of the following functions are 1-1? Find the inverse of each function that is 1-1.

(a)
$$y = 2x + 9$$

(a)
$$y = 2x + 3$$

(b) $y = (x + 2)^2 + 3$
(c) $y = \sqrt{x + 1}$

(c)
$$y = \sqrt{x+1}$$

(d)
$$y = 1 - x^3$$

(e)
$$y = 1 - x^4$$

(a)
$$y = 1$$
 $x = 1$
(b) $y = 1 - x^4$
(f) $y = (x + 2)^2, x \ge -2$
(g) $y = \frac{x + 5}{x - 5}$

(g)
$$y = \frac{x+5}{x-5}$$

$$(h) y = \frac{1}{x^2}$$

12. Graph the function f defined by

$$f(x) = \begin{cases} 2(1-x) & \text{if } x < 0 \\ 2+x & \text{if } x \ge 0 \end{cases}$$

C13. Graph the function f defined by

Graph the function f defined by
$$f(x) = \begin{cases} 6(x+2) & \text{if } -4 \le x < -2 \\ 1 - (x+1)^2 & \text{if } -2 \le x < 0 \\ 1 - (x-1)^2 & \text{if } 0 \le x < 2 \\ 6(x-2) & \text{if } 2 \le x \le 4 \end{cases}$$

range of g: $\{y \mid 0 \le y \le 1\}$ (b) $g \circ f$ not defined (range of f not contained in domain of g) $(f \circ g)(x) = 3 - x^2$ on domain of g: $\{x \mid -1 \le x \le 1\}$ 8. $f(x) = \sqrt{x}$, $g(x) = 8x^2 + x$ $g(x) = x^2 + x - 1$ 12. (b) $(f \circ f)(x) = x + \frac{1}{x} + \frac{x}{x^2 + 1}$, $(f \circ f \circ f)(x) = x + \frac{1}{x} + \frac{x}{x^2 + 1} + \frac{x^3 + x}{x^4 + 3x^2 + 1}$ 13. (a) $(f \circ g)(x) = \sin(5x)$, $(g \circ f)(x) = 5\sin x$, $(f \circ f)(x) = \sin(\sin x)$, $(g \circ g)(x) = 25x$ (b) $(f \circ g)(x) = \cos^2 x + 3$, $(g \circ f)(x) = \cos(x^2 + 3)$, $(f \circ f)(x) = x^4 + 6x^2 + 12$, $(g \circ g)(x) = \cos(\cos x)$ 14. (a) domain of f: $\{x \mid x \le -\sqrt{2} \text{ or } x \ge \sqrt{2}\}$, range of f: $\{y \mid y \ge 0\}$ domain of g: R, range of g not contained in domain of f) $(g \circ f)(x) = \sin(\sqrt{x^2 - 2})$ on domain of f: $\{x \mid x \le -\sqrt{2} \text{ or } x \ge \sqrt{2}\}$

EXERCISE 6.8

3. (a), (c), (d), (g), (i), and (j) only 2. (b), (c), and (f) only 1. (a) and (b) only domain: R domain: R 5. (a) $f^{-1}(x) = \frac{2-x}{5}$ range: R range: R domain: $\{x \mid x \ge 0\}$ (c) $f^{-1}(x) = \sqrt{x}$ range: $\{y \mid y \ge 0\}$ domain: R (e) $f^{-1}(x) = x^{\frac{1}{3}}$ range: R + 36 (c) $y = \left(\frac{x+6}{5}\right)^{\frac{1}{3}}$ (d) $y = x^2, x \ge 0$ (g) $y = \frac{1}{x} - 1$ (h) $y = \frac{1-x}{1+x}$ (k) $y = \sqrt[4]{x}, x \ge 0$ (1) $y = 1 + \sqrt{\frac{x}{3}}, x \ge 0$ (b) y = -5x + 366. (a) y = 2x + 7(e) $y = x^2 + 3, x \ge 0$ (f) $y = \frac{1}{x - 1}$ (g)
(i) $y = \frac{2x + 1}{4 - 3x}$ (j) $y = \frac{\pi}{x + 3}$ (l)
(m) $y = \sqrt{x^2 - 9}, x \ge 3$ (n) $y = \sqrt{25 - x^2}, 0 \le x \le 5$ 7. (a) $f^{-1}(x) = \frac{x+8}{5}$; $(f \circ f^{-1})(x) = x$, $(f^{-1} \circ f)(x) = x$ (b) $f^{-1}(x) = x^2$, $x \ge 0$; $(f \circ f^{-1})(x) = x$, $(f^{-1} \circ f)(x) = x$ 8. (i) (c) $f^{-1}(x) = \frac{x-1}{2}$ (ii) (c) $f^{-1}(x) = \sqrt{x-2} (x \ge 2)$

(iv) (c) $f^{-1}(x) = -\frac{1}{x}$

EXERCISE 6.9

1. 9 2. $f_n(x) = x^{2^{n+1}}$ 3. $f_{47}(2) = \frac{46}{47}$ 4. 800 5. 119 6. 24 7. 3

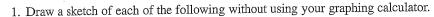
6.10 REVIEW EXERCISE

(iii) (c) $f^{-1}(x) = \sqrt[3]{x}$

ANSWERS 493

(b) translate f to the right 4 units (c) stretch f vertically by a factor of 3 (d) shrink f horizontally by a factor of $\frac{1}{3}$ (e) reflect f in the x-axis (f) translate f to the left 1 unit and stretch vertically by a factor of 2 (g) translate f to the right 1 unit and translate upward 2 units (h) shrink f vertically by a factor of $\frac{1}{3}$ and translate downward by 5 units (c) $\{x \mid x \ge -3\}$ (d) R (b) R 6. (a) $\{x \mid x \neq \pm 2\}$ (d) even (c) neither 8. (a) odd (b) even 10. (a) $(f \circ g)(x) = x^2 - 4x + 4$, $(f \circ f)(x) = x^4$, $(g \circ f)(x) = x^2 - 2$ $(g \circ g)(x) = x - 4$ (b) $(f \circ g)(x) = x^4 - 2x^2 + 2$, $(f \circ f)(x) = x^4 + 2x^2 + 2$ $(g \circ f)(x) = x^4 + 2x^2$ $(g \circ g)(x) = x^4 - 2x^2$ $(g \circ f)(x) = x$ (c) $(f \circ g)(x) = |x|$, $(f \circ f)(x) = x^{\frac{1}{4}},$ $(g \circ g)(x) = x^4$ (d) $(f \circ g)(x) = \frac{x-1}{2x-1}$, $(f \circ f)(x) = \frac{x+1}{x+2}$, $(g \circ f)(x) = -\frac{1}{x}$ $(g \circ g)(x) = x$ 11. (a) 1-1, $y = \frac{x-9}{2}$ (c) 1-1, $y = x^2 - 1$ (b) not 1-1 (f) 1-1, $y = \sqrt{x} - 2$, $x \ge 0$ (d) 1-1, $y = (1-x)^{\frac{1}{3}}$ (e) not 1-1 (h) not 1 - 1

6.11 CHAPTER 6 TEST


1. (b) and (c) are graphs of functions and (c) is 1-1. 2. $\{x \mid x > -1\}$ 5. stretch vertically by factor of 2 and reflect in x-axis 6. (a) neither (b) even (c) odd 7. $\{f \circ g\}(x) = 27x^2 - 24x + 4, (g \circ f)(x) = -9x^2 - 6x + 4$ 8. $y = x^2 - 5, x \ge 0$ 9. (a) \$5.40 (b) $C(x) = \begin{cases} 1.00, 0 < x \le 0.2 \\ 1.00 + (0.10)k, \text{ where } 0.2 + (0.1)k < x \le 0.3 + (0.1)k \text{ for } k = 0, 1, 2, ... \end{cases}$

REVIEW AND PREVIEW TO CHAPTER 7

LAWS OF EXPONENTS

(f) $2^{\frac{3}{2}}$ (e) $2^{\frac{1}{2}}$ (d) 2 1. (b) 215 1. (a) 2⁵ (k) 2 ¹ (I) 26 (h) 212 (j)2 ³ (i) 25 (g) 2º (e) 2 (f)7 (d)3 $(c)\frac{1}{36}$ (b) $\frac{1}{3}$ 2. (a) 1 (1) 125 $(k)^{\frac{1}{4}}$ (j)1 $(h)^{\frac{1}{4}}$ $(i)\frac{1}{64}$ (g) 27 (d) $\sqrt[4]{7^3}$ or $(\sqrt[4]{7})^3$ (c) [₹]√4 3. (a) $8^9 \times 17^9$ (b) 45⁶ (e) $\frac{3^8}{17^8}$ $(g) x^{\frac{2}{3}}$ (h) π^8 (f) 46 $(1) 5^{\frac{2}{3}}$ (j) 3²/2 (k) 24x8 $(i) 5^{13}$ $(0)\frac{X^4}{2^4}$ (n) X^{5 i n} (p) 31.5 (m) x⁵ⁿ (t) x^{n · 3} (r) X^{a | b | c} $(s) 6^3$ $(q) 5^{\frac{5}{2}}$ (e) $-27x^{14}y^2$ (d) a^{4n} n^2 (b) x⁵ $(c)\frac{1}{36}$ 4. (a) 25

Review Exercise

a.
$$y = (x - 2)(x + 3)$$

b. $y = -(x + 3)^2 + 1$
c. $y = x(x - 1)(x - 3)$
d. $y = (x + 2)(x - 4)(x - 2)$
e. $y = -(x - 2)^3$
f. $y = -(x + 4)(x - 1)(x + 3)$
g. $y = (x + 2)^2(x - 4)$
h. $y = (x - 2)^2(x + 1)^2$
j. $y = (x - 4)(x + 1)(x + 2)(x - 3)$
k. $y = (x - 2)^3(x + 3)$
l. $y = -x(x + 2)(x - 3)$

2. In each of the following, you are given a set of points that lie on the graph of a polynomial function. If possible, determine the equation of the function.

3. Perform the following divisions:

CHAPTER 1

a.
$$(x^3 - 2x^2 + 3x - 1) \div (x - 3)$$
 b. $(2x^3 + 5x + 4) \div (x + 2)$ c. $(4x^3 + 8x^2 - x + 1) \div (2x + 1)$ d. $(x^4 - 4x^3 + 3x^2 - 3) \div (x^2 + x - 2)$

4. Without using long division, determine the remainder when

- 5. Divide each polynomial by the factor given, then express each polynomial in factored form.
 - a. $x^3 + 2x^2 x 2$, given x 1 is a factor.
 - b. $x^3 3x^2 x + 3$, given x 3 is a factor.
 - c. $6x^3 + 31x^2 + 25x 12$, given 2x + 3 is a factor.
- 6. a. When $x^3 3kx^2 + x + 5$ is divided by x 2, the remainder is 9. Find the value of k.
 - b. When $rx^3 + gx^2 + 4x + 1$ is divided by x 1, the remainder is 12. When it is divided by x + 3, the remainder is -20. Find the values of r and g.

g.

i.

2. a.
$$f(x) = x^3 - 5x^2 + 10x - 11$$

b.
$$f(x) = 2x^3 - 3x^2 + 12x + 4$$

c.
$$f(x) = x^4 - 14x^2 + 5x - 1$$

3. a.
$$x^3 - 2x^2 + 3x - 1 = (x - 3)(x^2 + x + 6) + 17$$

b.
$$2x^3 + 5x + 4 = (x + 2)(2x^2 - 4x + 13) - 22$$

c.
$$4x^3 + 8x^2 - x + 1 = (2x + 1)(2x^2 + 3x - 2) + 3$$

d.
$$x^4 - 4x^3 + 3x^2 - 3 = (x^2 + x - 2)(x^2 - 5x + 10) - 20x + 17$$

4. a. 3 **b.** 1 **c.**
$$-33$$
 d. -1 **e.** $\frac{22}{9}$

4. a. 3 **b.** 1 **c.** -33 **d.** -1 **e.**
$$\frac{22}{9}$$

5. a. $x^3 + 2x^2 - x + 2 = (x - 1)(x + 1)(x + 2)$

b.
$$x^3 - 3x^2 - x + 3 = (x - 3)(x - 1)(x + 1)$$

c.
$$6x^3 + 31x^2 + 25x - 12 = (2x + 3)(3x - 1)(x + 4)$$

6. a. $k = \frac{1}{2}$ b. $r = 2$, $g = 5$

6. a.
$$k = \frac{1}{2}$$
 b. $r = 2$, $g = 5$

Chapter 1 Test

1. a.
$$2(3x - 56)(3x + 56)$$
 b. $(pm + 1)(m^2 + 1)$

c.
$$2(3x-2)(2x-3)$$
 d. $(x+y-3)(x-y+3)$

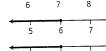
2. a.

3. a.
$$q(x) = x^2 - 7x + 20$$
 $r(x) = -44$

b.
$$q(x) = x^2 + 3x + 3$$
 $r(x) = 11$

6.
$$k = 3$$

7. a. Yes. **b.**
$$f(x) = 2x^3 - 3x^2 + 5x - 8$$


8.
$$c = \frac{-14}{3}$$
, $d = -\frac{5}{3}$

9.
$$(x-3)(x+3)$$

CHAPTER 2 POLYNOMIAL **EQUATIONS AND INEQUALITIES**

Review of Prerequisite Skills

1. a.
$$-3$$
 b. no solution **c.** $\frac{11}{4}$ or 2.75 **d.** 1 **2. a.** $x > 7$

c.
$$x \le -4.5$$
 d. $x > -2$

4. a.
$$-2$$
 b. 13 c. -52 d. $\frac{53}{8}$

5. a.
$$(x-6)(x-8)$$
 b. $(y-2)(y-1)$ c. $(3x-7)(x-1)$

d.
$$3(x-5)(x+5)$$
 e. $(3x-1)(2x+3)$ f. $x(x+8)(x-7)$

g.
$$4x(x+5)$$
 h. $3x(x-2)(x+2)$ **i.** $2(3x+2)(x-3)$

g.
$$4x(x+5)$$
 h. $3x(x-2)(x+2)$ i. $2(3x+2)(x-3)$
6. a. 0, 4 b. 3, -2 c. -3, -2 d. -6, -3 e. 5, -3 f. -1, $\frac{4}{7}$

g.
$$1, \frac{7}{3}$$
 h. $-3, 0, 3$ i. $\frac{1}{3}, 4$

7. a. 1.5, -5.5 b. 2.3,
$$-0.6$$
 c. $\frac{-1 \pm i\sqrt{35}}{6}$ d. 5.7, -0.7

e. 3,
$$-0.5$$
 f. 1.5, -0.7 g. $\frac{3 \pm i\sqrt{31}}{4}$ h. -6 , 1 i. 8.3, 0.7

Exercise 2.1

2. a.
$$(x - 5)$$
 b. Divide.

3.
$$(x + 1)$$
, $(x - 2)$, $(x + 3)$

5. b.
$$x - 3$$
 c. $x^2 + x + 1$

6. b.
$$x + 2$$
 c. $x^2 - 4x + 3$

7. a.
$$(x-1)(x^2+x-3)$$
 b. $(x+2)(x-1)(x+1)$

c.
$$(y-1)(y^2+20y+1)$$
 d. $(x+1)(x^2+x+4)$

e.
$$(y-2)(y^2+y+1)$$
 f. $(x-4)(x^2-5x+2)$

g.
$$(x + 2)(x - 3)(x^2 - 7x + 2)$$
 h. $(x + 2)(x - 8)(x^2 + 1)$

10. a.
$$(x-3)(x^2+3x+9)$$
 b. $(y+2)(y^2-2y+4)$

c.
$$(5u - 4r)(25u^2 + 20ur + 16r^2)$$

d.
$$2(10w + y)(100w - 10wy + y^2)$$

e.
$$(x + y - uz)(x^2 + 2xy + y^2 + xuz + yuz + u^2z^2)$$

f.
$$(5)(u - 4x - 2y)(u^2 + 4ux + 2uy + 16x^2 + 16xy + 4y^2)$$

12. b.
$$x^3 + x^2y + xy^2 + y^3$$
 c. $(x - 3)(x^3 + 3x^2 + 9x + 27)$

13. b.
$$x^4 + x^3y + x^2y^2 + xy^3 + y^4$$

c.
$$(x-2)(x^4-2x^3+4x^2-8x+16)$$

14. b.
$$x^{n-1} + x^{n-2}y + x^{n-3}y^2 + ... + y^{n-1}$$

18.
$$(x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4)$$

Exercise 2.2

1. a.
$$\pm \frac{1}{2}$$
, $\pm \frac{5}{2}$, ± 1 , ± 5 b. $-\frac{1}{3}$, $\frac{2}{3}$ c. ± 1 , ± 2 , $\pm \frac{1}{2}$, $\pm \frac{1}{4}$

d.
$$\pm 1$$
, ± 2 , ± 4 , $\pm \frac{1}{2}$, $\pm \frac{1}{4}$, $\pm \frac{1}{8}$ e. ± 1 , ± 3 , $\pm \frac{1}{2}$, $\pm \frac{3}{2}$, $\pm \frac{1}{3}$, $\pm \frac{1}{6}$ f. ± 1 , ± 2 , ± 3 , ± 6 , $\pm \frac{1}{2}$, $\pm \frac{3}{2}$

2.
$$5(2x-3)(x-2)$$

3.
$$-2(x-3)(4x+3)(x+2)$$

Review Exercise

- 1. a. If f(-3) = 0, state a factor of f(x).
 - b. If $f(\frac{2}{3}) = 0$, find a factor of f(x), with integral coefficients.
- 2. a. Find the family of cubic functions whose x-intercepts are 4, 1, and -2.
 - b. Find the particular member of the above family whose graph passes through the point (3, 10).
- 3. a. Determine if x + 2 is a factor of $x^5 4x^3 + x^2 3$.
 - b. Determine if x 3 is a factor of $x^3 + x^2 11x 3$.
- 4. Use the Factor Theorem to factor $x^3 6x^2 + 6x 5$.
- 5. a. If x-1 is a factor of $x^3-3x^2+4kx-1$, what is the value of k?
 - b. If x + 3 is a factor of $kx^3 + 4x^2 + 2kx 1$, what is the value of k?
- 6. Factor each of the following:

a.
$$x^3 - 2x^2 + 2x - 1$$

a.
$$x^3 - 2x^2 + 2x - 1$$
 b. $x^3 - 6x^2 + 11x - 6$

c.
$$8x^3 - 27y^3$$

c.
$$8x^3 - 27y^3$$
 d. $3(x + 2w)^3 - 3p^3r^3$

- 7. Use the Factor Theorem to prove that $x^2 4x + 3$ is a factor of $x^5 - 5x^4 + 7x^3 - 2x^2 - 4x + 3$.
- 8. Use your graphing calculator to factor each of the following:

a.
$$2x^3 + 5x^2 + 5x + 3$$

b.
$$9x^3 + 3x^2 - 17x + 5$$

9. If
$$f(x) = 5x^4 - 2x^3 + 7x^2 - 4x + 8$$
,

a. is it possible that
$$f(\frac{5}{4}) = 0$$
?

a. is it possible that
$$f\left(\frac{5}{4}\right) = 0$$
? b. is it possible that $f\left(\frac{4}{5}\right) = 0$?

10. Factor fully:

a.
$$3x^3 - 4x^2 + 4x - 1$$

b.
$$2x^3 + x^2 - 13x - 5$$

c.
$$30x^3 - 31x^2 + 10x - 1$$

11. Solve for $x, x \in C$.

a.
$$x^2 - 3x - 10 = 0$$

$$h r^3 - 25r = 0$$

c.
$$x^3 + 8 = 0$$

b.
$$x^3 - 25x = 0$$

d. $x^3 - x^2 - 9x + 9 = 0$

e.
$$x^4 - 12x^2 - 64 = 0$$

f.
$$x^3 - 4x^2 + 3 = 0$$

g.
$$x^3 - 3x^2 + 3x - 2 = 0$$
 h. $x^6 - 26x^3 - 27 = 0$

h.
$$x^6 - 26x^3 - 27 = 0$$

i.
$$(x^2 + 2x)^2 - (x^2 + 2x) - 12 = 0$$

12. Use your graphing calculator to find the approximate roots of the following equations (correct to three decimal places):

a.
$$x^2 = 2$$

technology

b.
$$x^2 + 10x - 2 = 0$$

c.
$$x^3 - x^2 - 4x - 1 = 0$$

d.
$$2x^3 + x^2 + 2 = 0$$

e.
$$x^4 - 10x^2 + 15 = 0$$

f.
$$x^6 - 11x^5 + x^2 - 1 = 0$$

13. If -2 is one root of $x^2 + kx - 6 = 0$, find the other root and the value of k.

14. Find the quadratic equation whose roots are the reciprocals of the roots of $2x^2 + 5x + 1 = 0$.

15. a. State the sum and product of the roots of $2x^2 - x + 4 = 0$.

b. Find a quadratic equation (with integral coefficients) whose roots have a sum of $\frac{1}{15}$ and a product of $-\frac{2}{15}$.

c. Find a quadratic equation (with integral coefficients) whose roots are 3 + 2i and 3 - 2i.

d. If 2 is one root of the equation $3x^2 + 4kx - 4 = 0$, find the other root and the value of k.

e. Find an equation whose roots are each three less than the roots of $x^2 - 5x + 2 = 0$.

f. Find an equation whose roots are the reciprocals of the roots of $2x^2 + x - 4 = 0$.

16. Solve for $x, x \in R$.

a.
$$(x-2)(x+4) < 0$$
 b. $x^2 + x - 2 \ge 0$

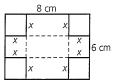
c.
$$x^3 +$$

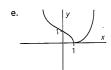
d.
$$x^3 - 2x^2 - x + 2 > 0$$
 e. $x^4 \le 0$

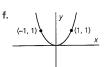
f.
$$x^4 + 5x^2 + 2 \ge 0$$

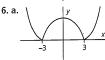
g.
$$x^6 - 8x^4 + 2 < 0$$
 h. $x^9 - 2x^7 + 1 > 0$

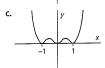
h.
$$x^9 - 2x^7 + 1 > 0$$


17. Solve for $x, x \in R$.


a.
$$|3x - 1| = 11$$
 b. $|x + 1| < 3^{*}$


h
$$|r+1| < 3$$


c.
$$|2x - 3| \ge 5$$


18. Identical squares are cut from each corner of a rectangular sheet of tin 8 cm \times 6 cm. The sides are bent upward to form an open box. If the volume of the box is 16 cm³, what is the length of each side of the squares cut from the original sheet?

7. a.
$$x = 4, -3$$
 b. $x = \frac{4}{3}, \frac{-8}{3}$ c. $-6 \le x \le 12$
d. $x \ge 1$ or $x \le -9$ e. $-\frac{1}{2} < x < \frac{7}{2}$ f. no solution
8. a. -1 b. 0.8 c. 4, $\frac{4}{3}$ d. $x > \frac{1}{2}$ e. $x < \frac{2}{5}$
f. $x \le -1$ or $x \ge \frac{5}{3}$ g. $-2, 4$ h. 0

Review Exercise

1. a.
$$(x + 3)$$
 b. $(3x - 2)$

2. a.
$$y = a(x - 4)(x - 1)(x + 2)$$
 b. $y = -(x - 4)(x - 1)(x + 2)$

4.
$$(x-5)(x^2-x+1)$$

5. a.
$$\frac{3}{4}$$
 b. $\frac{35}{33}$

6. a.
$$(x-1)(x^2-x+1)$$

b.
$$(x-1)(x-2)(x-3)$$
 c. $(2x-3y)(4x^2+6xy+9y^2)$

d.
$$3(x + 2x - pr)(x^2 + 4xw + 4w^2 + prx + 2wpr + p^2r^2)$$

8. a.
$$(2x+3)(x^2+x+1)$$
 b. $(x-1)(3x+5)(3x-1)$

9. a. Yes b. No

10. a.
$$(3x-1)(x^2-x+1)$$
 b. $(2x-5)(x^2+3x+1)$

c.
$$(5x-1)(3x-1)(2x-1)$$

11. a.
$$-2.5$$
 b. $0, -5, 5$ c. $-2, 1 \pm i\sqrt{3}$ d. $1, 3, -3$

e. -4, 4,
$$\pm 2i$$
 f. 1, $\frac{3 \pm \sqrt{21}}{2}$ g. 2, $\frac{1 \pm i\sqrt{3}}{2}$

h.
$$-1$$
, 3 , $\frac{-3 \pm 3i\sqrt{3}}{2}$, $\frac{1 \pm i\sqrt{3}}{2}$ **i.** $-1 \pm \sqrt{5}$, $-1 \pm i\sqrt{2}$

12. a. $x \doteq \pm 1.414$ **b.** $x \doteq -10.196$, 0.196

c. x = -1.377, -0.274, 2.651 **d.** x = -1.197

e. $x = \pm 2.857, \pm 1.356$ **f.** x = -5.67

13. $x_2 = 3$ and k = -1

14. $x^2 + 5x + 2 = 0$

15. a. $x_1 + x_2 = \frac{1}{2}$, $x_1 x_2 = 2$ b. $15x_2^2 - x - 2 = 0$

c. $x^2 - 6x + 13 = 0$ d. $x_2 = -\frac{2}{3}$, k = -1

e. $x^2 + x - 4 = 0$ f. $4x^2 - x - 2 = 0$

16. a. -4 < x < 2 b. $x \le -2$ or $x \ge 1$ c. $x \le 0$

d. -1 < x < 1 or x > 2 **e.** x = 0 **f.** R

g. -2.8 < x < -.72 or .72 < x < 2.8

h. -1.44 < x < 1 or x > 1.38

17. a. $\frac{-10}{3}$, 4 b. -4 < x < 2 c. $x \le -1$ or $x \ge 4$

18. 5 cm

Chapter 2 Test

1. No.

2. a.
$$(x-1)(x^2+4x+2)$$
 b. $(x+1)(2x-3)(x-3)$ **c.** $(x+1)(x-1)^3$

c.
$$(x+1)(x-1)^3$$

3.
$$(3x-2)(x^2+2x+2)$$

4. a. 3,
$$\frac{-3 \pm 3i\sqrt{3}}{2}$$
 b. 1, $\frac{3 \pm i\sqrt{3}}{2}$ **c.** 0, $\frac{1}{2}$, 3 **d.** ± 2 , ± 1

$$5. x^2 - 8x + 20 = 0$$

7. a.
$$-2 < x < 3$$
 or $x < -2$ b. $-2 \le x \le 0$ or $x \ge 2$

c.
$$x < -7$$
 or $x > 2$

8. a. 3 zeros, positive, cubic (3rd)

b. 2 zeros, positive, quartic (4th)

c. 3 zeros, negative, cubic (3rd)

9. a. 173.9 cm **b.** 6.52 kg

CHAPTER 3 INTRODUCTION TO CALCULUS

Review of Prerequisite Skills
1. a. -3 b. -2 c. 12 d. -1 e.
$$\frac{-2}{3}$$
 f. $\frac{-2}{3}$ g. 4 h. -4 i.
j. -1 k. $-\frac{41}{10}$ l. -1

j.
$$-1$$
 k. $-\frac{41}{10}$ l. -1

2. a.
$$y = 4x - 2$$
 b. $y = -2x + 5$

c.
$$y + 5 = 0$$
 d. $2x - 3y + 12 = 0$ **e.** $6x - 5y + 36 = 0$

f.
$$x + y - 2 = 0$$
 g. $6x - y + 2 = 0$ **h.** $4x - y = 0$

i.
$$7x - y - 27 = 0$$
 j. $3x + y - 6 = 0$ k. $x + 3 = 0$

1.
$$y - 5 = 0$$

3. a.
$$\frac{-5}{52}$$
 b. $\frac{-3}{13}$ c. 0 d. $\frac{5}{52}$

4. a. 6 **b.**
$$\sqrt{3}$$
 c. 9

5. a.
$$\frac{-1}{2}$$
 b. -1 c. 5 d. 1 e. 10^6

6. a.
$$\frac{2\sqrt{3}}{2}$$
 b. $\frac{6\sqrt{3} + \sqrt{6}}{3}$ c. $\frac{6 + 4\sqrt{3}}{3}$ d. $\frac{3 - \sqrt{3}}{6}$

e.
$$\frac{-5\sqrt{7}-20}{9}$$
 f. $-6-4\sqrt{3}$ g. $\frac{-15+10\sqrt{3}}{2}$

h.
$$\frac{-6\sqrt{6}-15\sqrt{2}}{13}$$
 i. $\frac{20+2\sqrt{5}}{19}$

7. a.
$$\frac{2}{5\sqrt{2}}$$
 b. $\frac{3}{6\sqrt{3} + \sqrt{6}}$ c. $\frac{-9}{5\sqrt{7} + 4}$ d. $\frac{-13}{6\sqrt{6} + 15\sqrt{2}}$

e.
$$\frac{-1}{\sqrt{3} + \sqrt{7}}$$
 f. $\frac{1}{2\sqrt{3} - 7}$

8. a.
$$(x-2)(x+2)$$
 b. $x(x-1)(x+1)$ c. $(x+3)(x-2)$

8. a.
$$(x-2)(x+2)$$
 b. $x(x-1)(x+1)$ c. $(x+3)(x-2)$ d. $(2x-3)(x-2)$ e. $x(x+1)(x+1)$ f. $(x+2)(x^2-2x)$

g.
$$(3x-4)(9x^2+12x+16)$$
 h. $(x-2)(x^2+3)$

i.
$$(x-1)(x+2)(2x-3)$$

9. a.
$$x \in R$$
 b. $x \in R$ c. $x \ge -5, x \in R$ d. $x \in R$

e.
$$x \neq 1, x \in R$$
 f. $x \in R$ g. $x \geq 9, x \in R$ h. $x \neq 0, x \in R$

i.
$$x \neq 5, x \in R$$
 j. $x \neq 4, -1, -5, x \in R$ k. $x \neq 3, \frac{1}{2}, x$

1.
$$x \neq -2, 1, -5, x \in R$$

Exercise 3.1

1. a. 3 b.
$$\frac{-5}{3}$$
 c. $\frac{-1}{3}$

2. a.
$$\frac{-1}{3}$$
 b. $\frac{-7}{13}$