Course: Grade 12 U Advanced Functions

Unit/Chapter: <u>Functions</u>

D note: <u>The Algebra of Functions</u>

We can define a new function by using algebra to combine two previous functions f(x) and g(x). These functions can be combined is a manner similar to the way we add, subtract, multiply and divide.

Operations on Functions Let the domain of f(x) be A and the domain of g(x) be B. Addition: (f+g)(x) = f(x) + g(x) Domain = $A \cap B$ Subtraction: (f-g)(x) = f(x) - g(x) Domain = $A \cap B$ Multiplication: (fg)(x) = f(x)g(x) Domain = $A \cap B$ Division: $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ Domain = $A \cap B$, $g(x) \neq 0$

Given $f(x) = x^2 - 5x - 1$ with domain $A = \{x \mid -4 \le x \le 1, x \in \Re\}$ and g(x) = 2x + 3 with domain $B = \{x \mid -2 \le x \le 5, x \in \Re\}$, find:

a)
$$(f+g)(x) = f(x) + g(x)$$
 domain $= A \cap B$
= $(x^2 - 5x - 1) + (2x + 3)$ $\{x \mid -2 \le x \le 1, x \in \mathfrak{R}\}$
= $x^2 - 3x + 2$

b)
$$(f-g)(x) = f(x) - g(x)$$
 domain = $A \cap B$
= $(x^2 - 5x - 1) - (2x + 3)$ $\{x | -2 \le x \le 1, x \in \mathfrak{R}\}$
= $x^2 - 7x - 4$

c)
$$(fg)(x) = f(x)g(x)$$
 domain = $A \cap B$
= $(x^2 - 5x - 1)(2x + 3)$
= $2x^3 - 7x^2 - 17x - 3$ $\{x | -2 \le x \le 1, x \in \mathfrak{R}\}$

Lesson: <u>2 - 4</u>

Topic: Algebra of Function

d)
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

 $= \frac{x^2 - 5x - 1}{2x + 3}$
domain $= A \cap B, g(x) \neq 0$
 $\left\{x \middle| -2 \le x \le 1, x \ne \frac{-3}{2}, x \in \mathfrak{R}\right\}$

We could also add or subtract functions graphically. (Note that multiplication and division are not defined graphically.) To complete either, we add or subtract the y – values from both functions.

(insert graph)

H homework assignment: **<u>FM12</u>** exercise 6.4 # 2 - 4, 7

EXERCISE 6.4 A 1. Given $f(x) = x^2 + 3x + 1$ and g(x) = x, both defined on R. (a) State. (i) (f + g)(x)(ii) (f - g)(x)(iii) (g - f)(x)(iv) (fg)(x) (v))(x) (b) State the domains of the functions in (a). 2. For each of the following pairs of functions f and g defined on A and B respectively, state. (a) (f + g)(x)(b) (f - g)(x)(c) the domain of f. + g (i) f(x) = x + 2, A = R, $g(x) = x^3 - 1$, $\mathsf{B} = \{ \mathsf{x} \mid \mathsf{0} \leqslant \mathsf{x} \leqslant \mathsf{1} \}$ (ii) $f(x) = 8x^7$, $A = \{x \mid 0 \le x \le 5\}$, $\begin{array}{l} g(x) \ = \ x^7 \ - \ x, \ B \ = \ \{x \ | \ -4 \leqslant x \leqslant 4\} \\ (\text{iii}) \ f(x) \ = \ x^3 \ - \ x^2 \ + \ 2x \ - \ 1, \end{array}$ $A = \{x \mid 1 < x < 4\}, g(x) = x^3 + 1,$ $B = \{ x \mid 0 < x < 2 \}$ 3. For each of the following pairs of functions f and g defined on A and B respectively, state. (b) the domain of fg (a) (fg)(x)(<u>f</u>) (g) (d) the domain of $\frac{f}{g}$ (c) |)(x) (i) f(x) = x + 1, A = R, g(x) = x - 1, B = R(ii) f(x) = x, $A = \{x \mid -3 < x < 3\}$, $\begin{array}{l} g(x) \,=\, x^2 - 4, \, B \,=\, \{x \mid -5 < x < 5\} \\ (\text{iii)} \ f(x) \,=\, \sqrt{x + 1}, \, A \,=\, \{x \mid x \geqslant -1\}, \end{array}$ $g(x) = \sqrt{x}, B = \{x \mid x \ge 0\}$ B 4. For each of the following pairs of functions f and g defined on A and B respectively, find (b) f - g (a) f + g (c) g – f (d) fg (e) $\frac{f}{g}$ and the domains of these functions. (i) $f(x) = x^2 + 2$, A = R, $g(x) = x^2 - 3x + 2, B = R$

186 FOUNDATIONS OF MATHEMATICS 12

$$\begin{array}{ll} \text{(ii)} & f(x) = x^3 - 1, \, A = R, \, g(x) = x^2 + 4, \\ B = \{x \mid x < 87\} \\ \text{(iii)} & f(x) = x^4 + x^2 + 1, \, A = R, \, g(x) = x^4, \\ B = R \\ \text{(iv)} & f(x) = \sqrt{x^2 - 1}, \, A = \{x \mid |x| \ge 1\}, \\ g(x) = \sqrt{4 - x^2}, \, B = \{x \mid |x| \ge 2\} \\ \text{(v)} & f(x) = x^4 - 3x^3 + x^2 - 2x - 8, \\ A = R, \, g(x) = x^2 - 2x - 8, \\ B = \{x \mid -2 \le x \le 4\} \end{array}$$

5. Copy each of the following graphs and use graphical addition to sketch the graph of f $\,+\,$ g.

(b)

5

(e)

(f)

6. Copy each of the graphs in question 5 and sketch the graph of f - g.

7. Given the following functions with the indicated domains,

(a) graph f and g on the same axes; (b) use graphical addition to sketch the graph of f + g; (c) give a formula for f + g; (d) state the domain of f + g., (i) $f(x) = 2x, g(x) = 1 - x, x \in \mathbb{R}$ (ii) $f(x) = x^2, g(x) = 2x, x \in \mathbb{R}$ (iii) $f(x) = x^2$ for $-2 \le x \le 2, g(x) = 1$ for x ≥ 0 (iv) f(x) = x for $x \in R$, $g(x) = \sqrt{x}$ for $x \ge 0$ (v) $f(x) = x^3$, g(x) = -x, $x \in R$ (vi) $f(x) = \sqrt{16 - x^2}$ for $|x| \le 4$, g(x) = x for x € R

8. Given $f(x) = x^2$ and g(x) = 2, $-2 \le x \le 2$. (a) Sketch the graphs of f and g on the same axes. (b) Sketch the graph of f + g.

(c) Sketch the graph of gf. (d) How are the graphs of f + g and gf related to the graph of f?

9. If $f(x) = x^2 - 4$ and g(x) = x, find the values of x for which (f + g)(x) = 2.

10. Let
$$f(x) = \frac{1}{x^2 - 4}$$
 and $g(x) = \frac{2x}{x - 2}$.

(a) What are the domains of the functions f, g, and f + g?

(b) For what value of x is (f + g)(x) = 2?

C11. The reciprocal function of f is the function

 $g(x) = \frac{1}{f(x)}$. Investigate the relationship between the graphs of a function and its reciprocal by studying the following special cases.

(a) Draw the graph of f(x) = x and, directly beneath it, draw the graph of $g(x) = \frac{1}{x}$. (b) Draw the graph of $f(x) = x^2$ and, directly

beneath it, draw the graph of $g(x) = \frac{1}{x^2}$.

(c) (i) What happens to the graph of $g(x) = \frac{1}{f(x)}$ when f(x) becomes large? (ii) What happens to the graph of

 $g(x) = \frac{1}{f(x)}$ when f(x) becomes close to 0? (d) Use these observations to sketch the graph of the function $g(x) = \frac{1}{x^2 - 1}$.

 $a^{b} = b^{a}$

FUNCTIONS 187

.....

 \mathcal{S}

1000

EXERCISE 6.3

1. (a) domain = $\{x \mid -1 \le x \le 1\}$, rar (b) domain = $\{x \mid -4 \le x \le 1\}$, ran	nge = $\{y \mid -2 \le y \le 2\}$ ge = $\{y \mid -1 \le y \le 2\}$	
2. (b) and (c) only 3. (a) not a function of x (d) a function of x (g) a function of x 4. $y = \frac{10 + \sqrt{160 - 4x^2 - 24x}}{2}$ and y	(b) not a function of x (e) a function of x (h) not a function of x $= \frac{10 - \sqrt{160 - 4x^2 - 24x}}{2}$	(c) a function of x (f) a function of x (i) not a function of x

EXERCISE 6.4

	1. (a) (i) $x^2 + 4x + 1$	(ii) $x^2 + 2x + 1$. (iii	$) - x^2 - 2x - 1$
	(iv) $x^3 + 3x^2 + x$	(v) $\frac{x^2 + 3x + 1}{x}$		
\supset	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i) R (iv) R (v) $\{x \mid (b) - x^3 + x + 3 \\ (b) 7x^7 + x \\ (b) -x^2 + 2x - 2 \end{bmatrix}$	(0 (0 2 (0	(c) $\{x \mid 0 \le x \le 1\}$ (c) $\{x \mid 0 \le x \le 4\}$ (c) $\{x \mid 1 < x < 2\}$
	3. (i) (a) x ² - 1	(b) R	(c) $\frac{x+1}{x-1}$	(d) $\{x \mid x \neq 1\}$
	(ii) (a) x ³ - 4x	(b) {x -3 < x < 3}	(c) $\frac{x}{x^2 - 4}$	(d) $\{x \mid -3 < x < 3, x \neq \pm 2\}$
	(iii) (a) $\sqrt{x^2 + x}$	(b) {x x ≥ 0}	(c) $\sqrt{1 + \frac{1}{x}}$	(d) $\{x \mid x > 0\}$
	4. (i) (a) $2x^2 - 3x + 4$, R (c) $-3x$, R		(b) $3x$, R (d) $x^4 - 3x^3 + 4x^2 -$	- 6x + 4, R
	(e) $\frac{x^2+2}{x^2-3x+2}$, {x x =	≠ 1, x ≠ 2}		
	(ii) (a) $x^3 + x^2 + 3$, {x x (c) $-x^3 + x^2 + 5$, {x x	< 87} x < 87}	(b) $x^3 - x^2 - 5$, {x (d) $x^5 + 4x^3 - x^2 -$	x < 87} 4, {x x < 87}
	(e) $\frac{x^3 - 1}{x^2 + 4}$, $\{x \mid x < 87\}$			
	(iii) (a) 2x ⁴ + x ² + 1, R (c) −x ² − 1, R		(b) $x^2 + 1$, R (d) $x^8 + x^6 + x^4$, R	
	(e) $\frac{x^4 + x^2 + 1}{x^4}$, {x x ≠	± 0}·		
	(b) $\sqrt{x^2 - 1} - \sqrt{4 - x}$	$\overline{\overline{2}}$, $\{x \mid -2 \le x \le -1 \text{ or } 1 \le x \le \overline{2}$, $\{x \mid -2 \le x \le -1 \text{ or } 1 \le x \le \overline{2}\}$	(≤ 2}	
	(d) $\sqrt{x^2-1} \times \sqrt{4-x}$	$\overline{I}, \{x \mid -2 \le x \le -1 \text{ or } 1 \le x \le \overline{2}, \{x \mid -2 \le x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le x \le \overline{2}, x \le -1 \text{ or } 1 \le \overline{2}, $	i ≤ 2} i ≤ 2}	
)	(e) $\frac{\sqrt{x^2 - 1}}{\sqrt{4 - x^2}}$, {x -2 <	$x \leq -1 \text{ or } 1 \leq x < 2$		
	(v) (a) $x^4 - 3x^3 + 2x^2 - 4$	$x - 16, \{x \mid -2 \le x \le 4\}$		

490 FOUNDATIONS OF MATHEMATICS 12

```
(b) x^4 - 3x^3, \{x \mid -2 \le x \le 4\}
             \begin{array}{l} \text{(b)} x^{*} - 5x^{*}, |x| - 2 \leq x \leq \tau_{1} \\ \text{(c)} - x^{4} + 3x^{3}, \{x| - 2 \leq x \leq 4\} \\ \text{(d)} x^{6} - 5x^{5} - x^{4} + 20x^{3} - 12x^{2} + 32x + 64, \{x| -2 \leq x \leq 4\} \\ \text{(e)} \frac{x^{4} - 3x^{3} + x^{2} - 2x - 8}{v^{2} - 2v - 8}, \{x| -2 < x < 4\} \end{array}
                              x^2 - 2x - 8
                                                                                                              (d) R
  7. (i) (c) x + 1
       (ii) (c) x^2 + 2x
                                                                                                              (d) B
      (iii) (c) x^2 + 1
                                                                                                               (d) \{x \mid 0 \le x \le 2\}
      (iv) (c) x + \sqrt{x}
                                                                                                              (d) \{x \mid x \ge 0\}
                                                                                                              (d) R
       (v) (c) x^3 - x
      (vi) (c) \sqrt{16 - x^2} + x
                                                                                                              (d) \{x \mid -4 \le x \le 4\}
  9. x = 2 and x = -3
10. (a) domain of f {x | x \neq \pm 2}, domain of g {x | x \neq 2}, domain of f + g {x | x \neq \pm 2}
      (b) -\frac{9}{4}
```

11. (c) (i) it becomes small (ii) it becomes large

EXERCISE 6.5

1. (a) translate f upward by 6 units

- (b) translate f to the left by 6 units
- (c) translate f downward by 8 units (d) translate f to the right by 8 units
- (e) stretch f vertically by a factor of 3
- (f) reflect f in the x-axis
- (g) stretch f vertically by a factor of 5 and reflect in the x-axis
- (h) shrink f vertically by a factor of $\frac{1}{5}$.
- (i) shrink f vertically by a factor of $\frac{1}{3}$ and reflect in the x-axis
- (j) translate f to the right by 2 units
- (k) translate f upward by 3 units (I) translate f to the left by 1 unit
- (m) stretch f vertically by a factor of 2
- (n) stretch f vertically by a factor of 2 and translate upward by 1 unit
- (o) translate to the left 1 unit
- (p) translate f to the left by 1 unit, then stretch vertically by a factor of 2
- (q) stretch f vertically by a factor of 4 and reflect in the x-axis (r) stretch f vertically by a factor of 4, reflect in the x-axis, and translate downward by 3 units
- (s) shrink f vertically by a factor of $\frac{1}{2}$

(t) shrink f vertically by a factor of $\frac{1}{2}$ and translate downward by 1 unit

5. (a) $y = (x + 1)^2 + 1$

 $(b) y = (x - 3)^2 - 9$ (d) y = $(x - \frac{5}{2})^2 - 11$ (c) y = $(x - \frac{1}{2})^2 + \frac{11}{4}$ $(f) y = -(x - \frac{3}{2})^2 + \frac{9}{4}$ $(e) y = -(x - 4)^2 + 4$ $(g) y = 2(x + 2)^2 - 11$ $(h) y = 3(x - 1)^2 - 2$ $(j) y = -2(x + 4)^2 + 37$ (i) y = $(x + \frac{1}{2})^2 + \frac{3}{4}$

- 9. (a) h(-3) = 0, h(-2) = 2, h(-1) = 2, h(0) = 4, h(1) = 4, h(2) = 2, h(3) = 2, h(4) = 0
- 11. (a) a reflection in the y-axis

(b) If -1 < b < 0, a horizontal stretch by a factor of $\frac{1}{b}$ and reflection in the y-axis

If b < -1, a horizontal shrink by a factor of $\frac{1}{b}$ and reflection in the y-axis

- If b = -1, a reflection in the y-axis 12. (a) stretch f vertically by a factor of 3 and translate upward 2 units
 - (b) reflect f in the x-axis and translate upward 1 unit
 - (c) translate f to the left 5 units
 - (d) shrink f horizontally by a factor of $\frac{1}{5}$

(e) shrink f horizontally by a factor of $\frac{1}{5}$, then expand vertically by a factor of 3

ANSWERS 491