LESSON PLAN

Course: Grade 12 U Advanced Functions
Unit/Chapter: Functions

Lesson: _ 2-4
Topic: Algebra of Function

\square note: The Algebra of Functions

We can define a new function by using algebra to combine two previous functions $f(x)$ and $g(x)$. These functions can be combined is a manner similar to the way we add, subtract, multiply and divide.

Operations on Functions

Let the domain of $f(x)$ be A and the domain of $g(x)$ be B .
Addition: $\quad(f+g)(x)=f(x)+g(x) \quad$ Domain $=A \cap B$
Subtraction: $\quad(f-g)(x)=f(x)-g(x) \quad$ Domain $=A \cap B$
Multiplication: $(f g)(x)=f(x) g(x) \quad$ Domain $=A \cap B$
Division: $\quad\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad$ Domain $=A \cap B, g(x) \neq 0$
Given $f(x)=x^{2}-5 x-1$ with domain $A=\{x \mid-4 \leq x \leq 1, x \in \mathfrak{R}\}$ and $g(x)=2 x+3$ with domain $B=\{x \mid-2 \leq x \leq 5, x \in \mathfrak{R}\}$, find:
a) $(f+g)(x)=f(x)+g(x) \quad$ domain $=A \cap B$

$$
=\left(x^{2}-5 x-1\right)+(2 x+3) \quad\{x \mid-2 \leq x \leq 1, x \in \mathfrak{R}\}
$$

b) $(f-g)(x)=f(x)-g(x)$

$$
\text { domain }=A \cap B
$$

$$
=\left(x^{2}-5 x-1\right)-(2 x+3)
$$

$$
\{x \mid-2 \leq x \leq 1, x \in \mathfrak{R}\}
$$

c) $(f g)(x)=f(x) g(x) \quad$ domain $=A \cap B$

$$
\begin{aligned}
& =\left(x^{2}-5 x-1\right)(2 x+3) \\
& =2 x^{3}-7 x^{2}-17 x-3
\end{aligned} \quad\{x \mid-2 \leq x \leq 1, x \in \mathfrak{R}\}
$$

d) $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$

$$
=\frac{x^{2}-5 x-1}{2 x+3}
$$

$$
\begin{aligned}
& \text { domain }=A \cap B, g(x) \neq 0 \\
& \left\{x \mid-2 \leq x \leq 1, x \neq \frac{-3}{2}, x \in \mathfrak{R}\right\}
\end{aligned}
$$

We could also add or subtract functions graphically. (Note that multiplication and division are not defined graphically.) To complete either, we add or subtract the y values from both functions.
(insert graph)

- homework assignment: $\underline{\text { FM12 }}$ exercise 6.4 \# $2-4,7$

EXERCISE 6.4

A 1. Given $f(x)=x^{2}+3 x+1$ and $g(x)=x$, both defined on R.
(a) State.
(i) $(f+g)(x)$
(ii) $(f-g)(x)$
(iii) $(g-f)(x)$
(iv) $(\mathrm{fg})(\mathrm{x})$
(v) $\left(\frac{f}{g}\right)(x)$
(b) State the domains of the functions in (a).
2. For each of the following pairs of functions f and g defined on A and B respectively, state.
(a) $(f+g)(x)$
(b) $(f-g)(x)$
(c) the domain of $f .+g$
(i) $f(x)=x+2, A=R, g(x)=x^{3}-1$, $B=\{x \mid 0 \leqslant x \leqslant 1\}$
(ii) $f(x)=8 x^{7}, A=\{x \mid 0 \leqslant x \leqslant 5\}$, $g(x)=x^{7}-x, B=\{x \mid-4 \leqslant x \leqslant 4\}$
(iii) $f(x)=x^{3}-x^{2}+2 x-1$,
$A=\{x \mid 1<x<4\}, g(x)=x^{3}+1$, $B=\{x \mid 0<x<2\}$
3. For each of the following pairs of functions f and g defined on A and B respectively, state.
(a) $(\mathrm{fg})(\mathrm{x})$
(b) the domain of fg
(c) $\left(\frac{f}{g}\right)(x)$
(d) the domain of $\frac{f}{g}$
(i) $f(x)=x+1, A=R, g(x)=x-1$, $B=R$
(ii) $f(x)=x, A=\{x \mid-3<x<3\}$,
$g(x)=x^{2}-4, B=\{x \mid-5<x<5\}$
(iii) $f(x)=\sqrt{x+1}, A=\{x \mid x \geqslant-1\}$,
$g(x)=\sqrt{x}, B=\{x \mid x \geqslant 0\}$

B 4. For each of the following pairs of functions f and g defined on A and B respectively, find
(a) $f+g$
(b) $f-g$
(c) $g-f$
(d) $f g$
(e) $\frac{f}{g}$
and the domains of these functions.
(i) $f(x)=x^{2}+2, A=R$,
$g(x)=x^{2}-3 x+2, B=R$
(ii) $f(x)=x^{3}-1, A=R, g(x)=x^{2}+4$, $B=\{x \mid x<87\}$
(iii) $f(x)=x^{4}+x^{2}+1, A=R, g(x)=x^{4}$, $B=R$
(iv) $f(x)=\sqrt{x^{2}-1}, A=\{x| | x \mid \geqslant 1\}$, $g(x)=\sqrt{4-x^{2}}, B=\{x| | x \mid \leqslant 2\}$
(v) $f(x)=x^{4}-3 x^{3}+x^{2}-2 x-8$, $A=R, g(x)=x^{2}-2 x-8$, $B=\{x \mid-2 \leqslant x \leqslant 4\}$
5. Copy each of the following graphs and use graphical addition to sketch the graph of $f+g$.
(a)

(b)

(c)

(d)

(e)

(f)

6. Copy each of the graphs in question 5 and sketch the graph of $f-g$.
7. Given the following functions with the indicated domains,
(a) graph f and g on the same axes;
(b) use graphical addition to sketch the graph of $f+\mathrm{g}$;
(c) give a formula for $f+g$;
(d) state the domain of $f+g$.,
(i) $f(x)=2 x, g(x)=1-x, x \in R$
(ii) $f(x)=x^{2}, g(x)=2 x, x \in R$
(iii) $f(x)=x^{2}$ for $-2 \leqslant x \leqslant 2, g(x)=1$ for $x \geqslant 0$
(iv) $f(x)=x$ for $x \in R, g(x)=\sqrt{x}$ for $x \geqslant 0$
(v) $f(x)=x^{3}, g(x)=-x, x \in R$
(vi) $f(x)=\sqrt{16-x^{2}}$ for $|x| \leqslant 4, g(x)=x$ for $x \in R$
8. Given $f(x)=x^{2}$ and $g(x)=2,-2 \leqslant x \leqslant 2$.
(a) Sketch the graphs of f and g on the same axes.
(b) Sketch the graph of $f+g$.
(c) Sketch the graph of gf.
(d) How are the graphs of $f+g$ and $g f$ related to the graph of f ?
9. If $f(x)=x^{2}-4$ and $g(x)=x$, find the values of x for which $(f+g)(x)=2$.
10. Let $\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}^{2}-4}$ and $\mathrm{g}(\mathrm{x})=\frac{2 \mathrm{x}}{\mathrm{x}-2}$.
(a) What are the domains of the functions f, g, and $f+g$?
(b) For what value of x is $(f+g)(x)=2$?

C11. The reciprocal function of f is the function $g(x)=\frac{1}{f(x)}$. Investigate the relationship between the graphs of a function and its reciprocal by studying the following special cases.
(a) Draw the graph of $f(x)=x$ and, directly beneath it; draw the graph of $g(x)=\frac{1}{x}$.
(b) Draw the graph of $f(x)=x^{2}$ and, directly beneath it, draw the graph of $g(x)=\frac{1}{x^{2}}$.
(c) (i) What happens to the graph of $g(x)=\frac{1}{f(x)}$ when $f(x)$ becomes large?
(ii) What happens to the graph of $g(x)=\frac{1}{f(x)}$ when $f(x)$ becomes close to 0 ?
(d) Use these observations to sketch the graph of the function $g(x)=\frac{1}{x^{2}-1}$.

Find unequal rational numbers other than 2 and 4 such that

$$
a^{b}=b^{a}
$$

(iii) (a) -1
(b) -1
(c) -1
(iv) $(a)-1$
(b) 0
(c) 1
(v) (a) 0
(b) 1
(c) 0
(vi) (a) 0
(c) 0
4. (a) $C(t)=\left\{\begin{array}{l}12,0<t \leqslant 3 \\ 12+2 k, 2+k<t \leqslant 3+k \text { for } k=1,2,3, \ldots\end{array}\right.$
(c) $\$ 20$
5. (a) $C(x)=\left\{\begin{array}{l}1.69,0<x \leqslant 100 \\ 1.69+0.34 k, 100 k<x \leqslant 100(k+1) k=1,2,3, \ldots, 8,9\end{array}\right.$
6. (a) $P(t)=\left\{\begin{array}{l}10 t, 0 \leqslant t \leqslant 40 \\ 400+15(t-40), t>40\end{array}\right.$
(b) $\$ 350, \$ 475$

EXERCISE 6.3

1. (a) domain $=\{x \mid-1 \leqslant x \leqslant 1\}$, range $=\{y \mid-2 \leqslant y \leqslant 2\}$
(b) domain $=\{x \mid-4 \leqslant x \leqslant 1\}$, range $=\{y \mid-1 \leqslant y \leqslant 2\}$
2. (b) and (c) only
3. (a) not a function of x
(b) not a function of x
(c) a function of x
(d) a function of x
(e) a function of x
$\begin{array}{ll}\text { (g) a function of } x & \text { (h) not a function of } x \\ y=\frac{10+\sqrt{160-4 x^{2}-24 x}}{2} \text { and } y=\frac{10-\sqrt{160-4 x^{2}-24 x}}{2}\end{array}$
$\begin{array}{ll}\text { (g) a function of } x & \text { (h) not a function of } x \\ y=\frac{10+\sqrt{160-4 x^{2}-24 x}}{2} \text { and } y=\frac{10-\sqrt{160-4 x^{2}-24 x}}{2}\end{array}$
(f) a function of x
i) not a function of x

EXERCISE 6.4

1. (a) (i) $x^{2}+4 x+1$
(ii) $x^{2}+2 x+1$
(iii) $-x^{2}-2 x-1$
(iv) $x^{3}+3 x^{2}+x$
(v) $\frac{x^{2}+3 x+1}{x}$
(b) (i) R
(ii) R
(iii) R
(iv) $R \quad$ (v) $\{x \mid x \neq 0\}$
2. (i) (a) $x^{3}+x+1$
(b) $-x^{3}+x+3$
(c) $\{x \quad 0 \leqslant x \leqslant 1\}$
(ii) (a) $9 x^{7}-x$
(b) $7 x^{7}+x$
(b) $-x^{2}+2 x-2$
(c) $\{x \mid 0 \leqslant x \leqslant 4\}$
(iii) (a) $2 x^{3}-x^{2}+2 x$
c) $\{x \mid 1<x<2\}$
3. (i) (a) $x^{2}-1$
(b) R
(c) $\frac{x+1}{x-1}$
(d) $\{x \mid x \neq 1\}$
(ii) $(a) x^{3}-4 x$
(b) $\{x \mid-3<x<3\}$
(c) $\frac{x}{x^{2}-4}$
(d) $\{x \mid-3<x<3, x \neq \pm 2\}$
(iii) (a) $\sqrt{x^{2}+x}$
(b) $\{x \mid x \geqslant 0\}$
(c) $\sqrt{1+\frac{1}{x}}$
(d) $\{x \mid x>0\}$
4. (i) (a) $2 x^{2}-3 x+4, R$
(b) $3 x, R$
(c) $-3 x, R$
(d) $x^{4}-3 x^{3}+4 x^{2}-6 x+4, R$
(e) $\frac{x^{2}+2}{x^{2}-3 x+2},\{x \mid x \neq 1, x \neq 2\}$
(ii) (a) $x^{3}+x^{2}+3,\{x \mid x<87\}$
(b) $x^{3}-x^{2}-5,\{x \mid x<87\}$
(c) $-x^{3}+x^{2}+5,\{x \mid x<87\}$
(d) $x^{5}+4 x^{3}-x^{2}-4,\{x \mid x<87\}$
(e) $\frac{x^{3}-1}{x^{2}+4},\{x \mid x<87\}$
(b) $x^{2}+1, R$
(iii) (a) $2 x^{4}+x^{2}+1, R$
(d) $x^{8}+x^{6}+x^{4}, R$
(c) $-x^{2}-1, R$
(e) $\frac{x^{4}+x^{2}+1}{x^{4}},\{x \mid x \neq 0\}$
(iv) (a) $\sqrt{x^{2}-1}+\sqrt{4-x^{2}},\{x \mid-2 \leqslant x \leqslant-1$ or $1 \leqslant x \leqslant 2\}$
(b) $\sqrt{x^{2}-1}-\sqrt{4-x^{2}},\{x \mid-2 \leqslant x \leqslant-1$ or $1 \leqslant x \leqslant 2\}$
(c) $\sqrt{4-x^{2}}-\sqrt{x^{2}-1},\{x \mid-2 \leqslant x \leqslant-1$ or $1 \leqslant x \leqslant 2\}$
(d) $\sqrt{x^{2}-1} \times \sqrt{4-x^{2}},\{x \mid-2 \leqslant x \leqslant-1$ or $1 \leqslant x \leqslant 2\}$
(e) $\frac{\sqrt{x^{2}-1}}{\sqrt{4-x^{2}}},\{x \mid-2<x \leqslant-1$ or $1 \leqslant x<2\}$
(v) (a) $x^{4}-3 x^{3}+2 x^{2}-4 x-16,\{x \mid-2 \leqslant x \leqslant 4\}$
(b) $x^{4}-3 x^{3},\{x \mid-2 \leqslant x \leqslant 4\}$
(c) $-x^{4}+3 x^{3},\{x \mid-2 \leqslant x \leqslant 4\}$
(d) $x^{6}-5 x^{5}-x^{4}+20 x^{3}-12 x^{2}+32 x+64,\{x \mid-2 \leqslant x \leqslant 4\}$
(e) $\frac{x^{4}-3 x^{3}+x^{2}-2 x-8}{x^{2}-2 x-8},\{x \mid-2<x<4\}$
5. (i) (c) $x+1$
(d) R
(ii) $\left(\right.$ c) $x^{2}+2 x$
(d) R
(iii) $\left(\right.$ c) $x^{2}+1$
(d) $\{x \mid 0 \leq x \leq 2\}$
(iv) (c) $x+\sqrt{x}$
(d) $\{x \mid x \geqslant 0\}$
(v) (c) $x^{3}-x$
(d) R
(vi) (c) $\sqrt{16-x^{2}}+x$
(d) $\{x \mid-4 \leqslant x \leqslant 4\}$
6. (a) domain of $f\{x \mid x \neq \pm 2\}$, domain of $g\{x \mid x \neq 2\}$, domain of $f+g\{x \mid x \neq \pm 2\}$
(b) $-\frac{9}{4}$
7. (c) (i) it becomes small \quad (ii) it becomes large

EXERCISE 6.5

1. (a) translate f upward by 6 units
(b) translate f to the left by 6 units
(c) translate f downward by 8 units
(d) translate f to the right by 8 units
(e) stretch f vertically by a factor of 3
(f) reflect f in the x-axis
(g) stretch f vertically by a factor of 5 and reflect in the x -axis
(h) shrink f vertically by a factor of $\frac{1}{5}$
(i) shrink f vertically by a factor of $\frac{1}{3}$ and reflect in the x-axis
(i) translate f to the right by 2 units
(k) translate f upward by 3 units
(I) translate f to the left by 1 unit
(m) stretch f vertically by a factor of 2
(n) stretch f vertically by a factor of 2 and translate upward by 1 unit
(o) translate to the left 1 unit
(p) translate f to the left by 1 unit, then stretch vertically by a factor of 2
(q) stretch f vertically by a factor of 4 and reflect in the x-axis
(r) stretch f vertically by a factor of 4 , reflect in the x-axis, and translate downward by 3 units
(s) shrink f vertically by a factor of $\frac{1}{2}$
(t) shrink f vertically by a factor of $\frac{1}{2}$ and translate downward by 1 unit
2. (a) $y=(x+1)^{2}+1$
(b) $y=(x-3)^{2}-9$
(c) $y=\left(x-\frac{1}{2}\right)^{2}+\frac{11}{4}$
(d) $y=\left(x-\frac{5}{2}\right)^{2}-11$
(e) $y=-(x-4)^{2}+4$
(f) $y=-\left(x-\frac{3}{2}\right)^{2}+\frac{9}{4}$
(g) $y=2(x+2)^{2}-11$
(h) $y=3(x-1)^{2}-2$
(i) $y=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$
(j) $y=-2(x+4)^{2}+37$
3. (a) $h(-3)=0, h(-2)=2, h(-1)=2, h(0)=4, h(1)=4, h(2)=2, h(3)=2, h(4)=0$
4. (a) a reflection in the y-axis
(b) If $-1<b<0$, a horizontal stretch by a factor of $\frac{1}{b}$ and reflection in the y-axis

If $b<-1$, a horizontal shrink by a factor of $\frac{1}{b}$ and reflection in the y-axis If $b=-1$, a reflection in the y-axis
12. (a) stretch f vertically by a factor of 3 and translate upward 2 units
(b) reflect f in the x-axis and translate upward 1 unit
(c) translate f to the left 5 units
(d) shrink f horizontally by a factor of $\frac{1}{5}$
(e) shrink f horizontally by a factor of $\frac{1}{5}$, then expand vertically by a factor of 3

