LESSON PLAN

Course: Grade 12 U Advanced Functions

Lesson: 2-5
Unit/Chapter: Functions
Topic: $\underline{\text { Inverse Functions }}$

д homework check: FM12 exercise 6.4

4 note: Inverse Functions

A function has an inverse if $f(x)$ maps x onto y and $f^{-1}(x)$ maps y back onto x , in other words $f^{-1}(x)$ undoes what $f(x)$ originally accomplished. A function has an inverse if and only if it is a $1-1$ function. To determine if a function is $1-1$, we can use the horizontal line test. For example,

Parabola:

*not a 1 - 1 function

Root:

To find the inverse algebraically, we rely on the idea that if $f(x)$ maps x onto y and $f^{-1}(x)$ maps y back onto x , then the inverse is exchanging the x variable with the y variable. For example,

$$
\begin{array}{ll}
y=4 x-3 \quad \text { To find the inverse, we exchange } \mathrm{x} \text { and } \mathrm{y}: & \begin{array}{l}
x=4 y-3 \\
\\
x+3=4 y \\
\text { and solve for } \mathrm{y}: \quad
\end{array} \quad \begin{array}{l}
\frac{x+3}{4}=y \\
\\
\\
\therefore f^{-1}(x)=\frac{x+3}{4}
\end{array}
\end{array}
$$

The principle of interchanging x and y also gives us a way to graph the inverse, given the original. For example,

Graph $y=\frac{1}{2} x+3$ and its inverse.

\# homework assignment: ㅌM12 p. 207 exercise $6.8 \# 2,3,5,6$, \& 8

EXERCISE 6.8

A 1. Which of the functions represented by the following arrow diagrams are 1-1?
(a)

(b)

(c)

2. Which of the functions whose graphs are given are one-to-one functions?
(a)

(c)

(e)

(b)

(d)

B 3. Which of the following functions are 1-1?
(a) $f(x)=x+1$
(b) $g(x)=\mid x$
(c) $y=3-2 x$
(d) $h(x)=\frac{1}{x}$
(e) $F(x)=\frac{1}{x^{2}}$
(f) $y=1-x^{2}$
(g) $f(t)=-t^{3}$
(h) $\mathrm{G}(\mathrm{t})=\mathrm{t}^{4}$
(i) $y=\sqrt{x}$
(j) $f(x)=\frac{1}{x^{2}}, x<0$
4. Draw arrow diagrams for the inverses of those functions in question 1 that are 1-1.
5. In each of the following cases find f^{-1} and state the domain and range of f^{-1}.
(a) $f(x)=2-5 x$
(b) $f(x)=13 x+6$
(c) $f(x)=x^{2}, x \geqslant 0$
(d) $f(x)=\frac{1}{x}$
(e) $f(x)=x^{3}$
(f) $f(x)=3 x-2,0 \leqslant x \leqslant 4$
6. Find the inverses of the following functions.
(a) $y=\frac{1}{2}(x-7)$
(b) $y=\frac{1}{5}(36-x)$
(c) $y=5 x^{3}-6$
(d) $y=\sqrt{x}$
(e) $y=\sqrt{x-3}$
(f) $y=1+\frac{1}{x}$
(g) $y=\frac{1}{1+x}$
(h) $y=\frac{1-x}{1+x}$
(i) $y=\frac{4 x-1}{3 x+2}$
(j) $y=\frac{\pi-3 x}{x}$
(k) $y=x^{4}, x \geqslant 0$
(l) $y=3(x-1)^{2}, x \geqslant 1$
(m) $y=\sqrt{x^{2}+9}, x \geqslant 0$
(n) $y=\sqrt{25-x^{2}}, x \geqslant 0$
7. In each of the following cases find f^{-1} and then calculate $f \circ f^{-1}$ and $f^{-1} \circ f$.
(a) $f(x)=5 x-8$
(b) $f(x)=\sqrt{x}$
8. For each of the following functions,
(a) draw the graph of f.
(b) use it to draw the graph of f^{-1}.
(c) find the expression for $f^{-1}(x)$.
(i) $f(x)=2 x+1$
(ii) $f(x)=x^{2}+2, x \geqslant 1$
(iii) $f(x)=x^{3}$
(iv) $f(x)=-\frac{1}{x}$

8. $f(x)=\sqrt{x}, g(x)=8 x^{2}+x \quad$ 9. $g(x)=4 x-5$
10. $g(x) \xlongequal{2} x^{2}+x-1 \quad$ 11. $g(x)=4 x-17$
12. $(b)(f \circ f)(x)=x+\frac{1}{x}+\frac{x}{x^{2}+1}$, $(f \circ f \circ f)(x)=x+\frac{1}{x}+\frac{x}{x^{2}+1}+\frac{x^{3}+x}{x^{4}+3 x^{2}+1}$
13. (a) $(f \circ g)(x)=\sin (5 x),(g \circ f)(x)=5 \sin x,(f \circ f)(x)=\sin (\sin x),(g \circ g)(x)=25 x$
(b) $(f \circ g)(x)=\cos ^{2} x+3,(g \circ f)(x)=\cos \left(x^{2}+3\right),(f \circ f)(x)=x^{4}+6 x^{2}+12,(g \circ g)(x)=\cos (\cos x)$
14. (a) domain of f: $\{x \mid x \leqslant-\sqrt{2}$ or $x \geqslant \sqrt{2}\}$, range of $f:\{y \mid y \geqslant 0\}$
domain of g : R, range of $g:\{y \mid-1 \leqslant y \leqslant 1\}$
(b) $f \circ g$ not defined (range of g not contained in domain of f)
$(g \circ f)(x)=\sin \left(\sqrt{x^{2}-2}\right)$ on domain of $f:\{x \mid x \leqslant-\sqrt{2}$ or $x \geqslant \sqrt{2}\}$

EXERCISE 6.8

1. (a) and (b) only
2. (a) $f^{-1}(x)=\frac{2-x}{5}$
domain: R
range: R
domain: $\{x \mid x \geqslant 0\}$
range: $\{y \mid y \geqslant 0\}$
domain: R
range: R
3. (b), (c), and (f) only
(b) $f^{-1}(x)=\frac{x-6}{13}$
4. (a), (c), (d), (g), (i), and (j) only domain: R

range: R

domain: $\{x \mid x \neq 0\}$
range: $\{y \mid y \neq 0\}$
domain: $\{x \mid-2 \leq x \leq 10\}$
range: $\{y \mid 0 \leqslant y \leqslant 4\}$
(c) $y=\left(\frac{x+6}{5}\right)^{\frac{1}{3}}$
(d) $y=x^{2}, x \geqslant 0$
(g) $y=\frac{1}{x}-1$
(h) $y=\frac{1-x}{1+x}$
(e) $y=x^{2}+3, x \geqslant 0$
(f) $y=\frac{1}{x-1}$
(k) $y=\sqrt[4]{x}, x \geqslant 0$
(j) $y=\frac{\pi}{x+3}$
(n) $y=\sqrt{25-x^{2}}, 0 \leqslant x \leqslant 5$
(b) $y=-5 x+36$
(1) $y=1+\sqrt{\frac{x}{3}}, x \geqslant 0$
(m) $y=\sqrt{x^{2}-9}, x \geqslant 3$
$(x)=x,(f-1 \circ f)(x)=x$
(a) $f^{-1}(x)=\frac{x+8}{5} ;\left(f \circ f^{-1}\right)(x)=x,\left(f^{-1} \circ f\right)(x)=x$
(b) $f^{-1}(x)=x^{2}, x \geqslant 0 ;\left(f \circ f^{-1}\right)(x)=x,\left(f^{-1} \circ f\right)(x)=x$
8. (i) $\left(\right.$ c) $f^{-1}(x)=\frac{x-1}{2}$
(ii) $(c) f^{-1}(x)=\sqrt{x-2}(x \geqslant 2)$
(iii) $(c) f^{-1}(x)=\sqrt[3]{x}$
(iv) $(c) f^{-1}(x)=-\frac{1}{x}$

EXERCISE 6.9

1. 9
2. $f_{n}(x)=x^{2^{n+1}}$
3. $f_{47}(2)=\frac{46}{47}$
4. 800
5. 119
6. 24
7. 3

6.10 REVIEW, EXERCISE

1. (a) 7
(b) 0
(c) 14
(d) 10
(e) -1
(f) 98
(g) -10
(h) -6
(i) -12
(j) -2
(k) 62
(I) $\pi^{2}-2$
2. (a) domain $\{-1,0,1\}$, range $\{5,6,7\}, 1-1$
(b) domain $\{1,2,3,4\}$, range $\{\pi, 2 \pi, 3 \pi\}$, not $1-1$
(c) domain $\{1,2,3\}$, range $\{5,7,9\}, 1-1$
(d) domain $\{2,4,6\}$, range $\{1,3\}$, not $1-1$
3. (a), (c), and (d) are graphs of functions and (c) is $1-1$.
4. (a) 5
(b) 3
(f) -2
(c) 7
(d) 7
(e) 2
(g) 1
(h) 10
5. (a) translate f downward 4 units
