NAME: \qquad

Unit 3 Assignment - Exponents and Logarithms

Knowledge	50	
Application	45	
Communication		

PART A: Knowledge

1. Simplify.
a) $\frac{5 x^{3}\left(-3 x^{5}\right)^{3}}{-9 x^{-7}}=$
b) $\frac{5^{-1}-3^{-2}}{2^{-2}}=$
$(3,3)$
c) $\left(\frac{625}{81}\right)^{\frac{-3}{4}}=$
d) $4^{-1}+\frac{1}{3^{-1}+\frac{1}{1+2^{-2}}}=$
$(3,3)$

2. Solve.

a) $4^{3 x-2}-1=15$
b) $-15\left(5^{2 x+3}\right)=-375$
$(3,3)$
c) $4^{2 x}-20\left(4^{x}\right)+64=0$
d) $3^{3 x-2}-27=0$
$(3,3)$
3. Graph each of the following. Include descriptions as part of a full solution.
a) $y=-2^{x+4}+3$

Graph: (2)

Descriptions: (3)

b) $y=3 \cdot 2^{2 x-4}$

Descriptions: (3)
Graph: (2)

4. Solve for x .

a) $\log _{6} 1296=x$
b) $\log _{3} 9 \sqrt{27}=x$
$(2,2)$
c) $\log _{2} 4 \sqrt[3]{32}=x$
d) $\log _{x} 81=4$
$(2,2)$
e) $3^{\log _{3} 9}=x$
f) $\log _{x} 49=\frac{2}{3}$
$(2,2)$
g) $\log _{16} 2=\frac{x}{4}$
$(2,2)$
h) $\log _{9}\left(\frac{1}{27}\right)=\frac{-x}{2}$

PART B: Application - all decimals rounded to four decimal places where necessary.

1. A bacteria culture starts with $\mathbf{1 0 0} 000$ bacteria. After $\mathbf{8} h$ the estimated count is $\mathbf{2 5 0}$. What is the half life (to the nearest tenth of an hour?
(3)
2. Tristan's bank account is assuring him fantastic interest over the next ten years. He has estimated the doubling period for the account is $\mathbf{1 5}$ years. If his account balance is currently $\mathbf{\$ 1 0 0 0}$, how long will it be before he has $\$ 1250$ in his account (to the nearest tenth of a year?
(3)
3. Evaluate using the rules for logarithms.
a) $\log _{2} 256-\log _{2} 8=$
b) $\log _{3} 9+\log _{3} 27=$

$(2,2)$

c) $\frac{1}{2} \log _{4} 2 \sqrt{64}+3 \log _{4}\left(\frac{1}{16}\right)=$
d) $\log _{5}\left(\frac{1}{625}\right)-3 \log _{2} 16=$
$(2,2)$
4. Solve. Show answers in both exact form and as a decimal rounded to the nearest four places.
a) $7=3^{x+2}$
b) $3^{-x+5}=4$
$(3,3)$
c) $2^{4 x-3}=7$
d) $\log _{3} 18-\log _{3} 2=x$
$(3,3)$
5. For each of the following, draw the exponential function and the inverse on the same axes. Each graph will be fully labelled, showing at least three points. All work must be shown for full credit.
a) $y=\frac{\log (x-1)}{\log 3}+2$

Corresponding exponential function: Descriptions of exponential equivalent:
$(3,2)$

Graph:

(4)

b) $y=\frac{-\log (x-1)}{\log 2}+3$

Corresponding exponential function: Descriptions of exponential equivalent:
$(3,3)$

Graph:

(4)

