LESSON PLAN

Course: Grade 12 U Advanced Functions
Lesson: _3-2
Unit/Chapter: _Exponents_\& Logarithms_Topic: Exponential Equations
$\square \quad$ homework check: $\underline{\text { FM11 }}$ exercise 1.8 and 1.9 p. $17-19$

note: Exponential Equations

Recall, in order to solve an exponential equation, we must have the bases equal. To achieve equal bases, we require a good understanding of our basic exponent rules. Once the bases are equal, we can then set the exponents equal and solve for x using regular equation solving processes.
examples)
$4^{2 x-1}=\frac{1}{16^{3 x+2}}$
$4^{2 x-1}=\left(16^{3 x+2}\right)^{-1}$
$4^{2 x-1}=\left[\left(4^{2}\right)^{3 x+2}\right]^{-1}$
$4^{2 x-1}=4^{-6 x-4}$
$\therefore 2 x-1=-6 x-4$
$8 x=-3$
$x=\frac{-3}{8}$
$2^{x+3}-2^{x}=224$
$2^{x}\left(2^{3}-1\right)=224$
$2^{x}(7)=224$
$2^{x}=32$
$2^{x}=2^{5}$
$\therefore x=5$

$$
\begin{aligned}
& 4 \cdot 3^{2 x+3}=108 \\
& 3^{2 x+3}=27 \\
& 3^{2 x+3}=3^{3} \\
& \therefore 2 x+3=3 \\
& 2 x=0 \\
& x=0
\end{aligned}
$$

$$
3^{2 x}-6\left(3^{x}\right)-27=0
$$

let $a=3^{x}$
$a^{2}-6 a-27-0$
$(a-9)(a+3)=0$
$a=9$ and $a=-3$
but $a=3^{x}$
$3^{x}=9$ and $3^{x}=-3$
$x=2 \quad$ extraneous

AW11 exercise 1.6 p. 51 \#12

Equations such as $2^{2 x-1}=2^{9}$ are solved by setting the exponents equal to each other and solving the equation.

$$
\begin{aligned}
2 x-1 & =9 \\
2 x & =10 \\
x & =5
\end{aligned}
$$

This method of solving an exponential equation is based on the property that if $a^{x}=a^{y}$, then $x=y$, for $x \neq-1,0,1$.

EXAMPLE 1. Solve. $3^{\mathrm{x}}=81$

SOLUTION:

$$
\begin{aligned}
3^{x} & =81 \\
3^{x} & =3^{4} \\
x & =4
\end{aligned}
$$

\therefore the solution is $x=4$.

EXAMPLE 3. Solve. $5^{x-2}=625$ SOLUTION:

EXAMPLE 2. Solve. $4^{8 x}=\frac{1}{16}$ SOLUTION:

$$
\begin{aligned}
4^{8 x} & =\frac{1}{16} \\
\left(2^{2}\right)^{8 x} & =2^{-4} \\
2^{16 x} & =2^{-4} \\
16 x & =-4 \\
x & =\frac{-4}{16} \\
x & =-\frac{1}{4}
\end{aligned}
$$

\therefore the solution is $x=-\frac{1}{4}$.

$$
\begin{aligned}
5^{x-2} & =625 \\
5^{x-2} & =5^{4} \\
x-2 & =4 \\
x & =6
\end{aligned}
$$

\therefore the solution is 6 .

EXERCISE 1.12

B 1. Solve the following equations for $x \in N$.
(a) $2^{x}=32$
(b) $3^{x}=27$
(c) $2^{x}=64$
(d) $5^{x}=25$
(e) $3^{x}=81$
(f) $7^{x}=49$
(g) $(-3)^{x}=-27$
(h) $(-2)^{x}=-8$
(i) $(-2)^{x}=16$
(j) $(-5)^{x}=25$
2. Solve the following equations for $x \in N$.
(a) $4^{x}=256$
(b) $6^{x+3}=6^{2 x}$
(c) $9^{x}=729$
(d) $2^{x}=16^{4}$
(e) $2^{x}=4^{x-1}$
(f) $2\left(5^{x}\right)=1250$
(g) $9^{2 x-6}=3^{x+6}$
(h) $4^{2 x-1}=64$
(i) $1^{x}=1$
(j) $(-1)^{x}=1$
3. Solve the following equations for $x \in I$.
(a) $6^{3 x-6}=1$
(b) $2^{-x}=128$
(c) $5^{4-x}=\frac{1}{5}$
(d) $(-1)^{x}=1$
(e) $3^{2-x}=1$
(f) $4^{3 x}=64$
(g) $4^{x-1}=1$
(h) $(-1)^{2 x}=1$
(i) $7^{x-2}=49$
(j) $2^{-2 x}=32$
4. Solve the following for $x \in R$.
(a) $4^{x}=8$
(b) $2^{9 x}=\frac{1}{8}$
(c) $64^{x}=16$
(d) $9^{6 x}=\frac{1}{27}$
(e) $9^{2 x+1}=27$
(f) $5^{2 x+1}=\frac{1}{125}$
(g) $32^{3 x-2}=64$
(h) $3^{3 x-1}=\frac{1}{81}$
(i) $10^{x}=10000$
(j) $10^{x-2}=\frac{1}{10000}$
(k) $3\left(5^{x+1}\right)=15$
(I). $2\left(3^{x-2}\right)=18$
$(m) 5\left(4^{x}\right)=10$
(n) $3^{2 x-1}+1=2$
(g) $\frac{1}{10000}$
(h) $\frac{1}{837}$
2. (a) $\frac{1}{x^{8}}$
(b) $\frac{x^{2}}{y^{2}}$
(c) $\frac{1}{a^{3} b^{4}}$
(d) $\frac{1}{a^{2}}$
(e) a^{10}
(f) $\left(\frac{y}{x}\right)^{3}$
3. (a) x^{-3}
(b) $2 a b^{-4}$
(c) $\pi x^{2} y$
(d) 4
(e) 9
(f) 2
(g) $\frac{5}{4}$
(h) $\frac{10}{21}$
(c) $\frac{27}{25}$
(j) 625
(k) $\frac{45}{19}$
(1) $\frac{7}{4}$
5. (a) $\frac{343 x^{6}}{y^{9}}$
(b) $\frac{a^{5} b^{10}}{243}$
(c) $\frac{64 a^{3} c^{9}}{b^{6} d^{12}}$
(d) $\frac{a^{2}}{b^{3}}$
(e) $a^{2} b^{2} x^{2} y^{4}$
(f) $\frac{a^{4}}{b^{2}}-2 \frac{a^{2}}{b}+1$
(g) $a^{6}+a^{5}-5 a^{2}$
(h) $2 x^{2}-\frac{1}{x^{2}}-1$
(i) $\frac{1}{b^{2 n}}$
(j) $\frac{1}{x^{2 n}}-\frac{1}{y^{2 m}}$

EXERCISE 1.10

1. (a) \$9658.92
(b) $\$ 18655.38$
(c) $\$ 7875.66$
(d) $\$ 3655.96$
(e) $\$ 3867.65$
2. $\$ 5499.49$
3. $\$ 4$
4. $\$ 5131.58$

EXERCISE 1.11

1. (a) $\sqrt[9]{2}$
$\begin{array}{ll}\text { (b) } \sqrt{37} & \text { (c) } \sqrt[3]{x}\end{array}$
(d) $\sqrt[3]{4}$
(e) $\sqrt{8}=2 \sqrt{2}$
(f) $\sqrt[4]{27}$
(k) $\frac{1}{\sqrt{a^{3}}}$
(g) $\sqrt[5]{a^{2}}$ or $(\sqrt[5]{a})^{2}$ (1) $\sqrt[11]{81}$
(h) $\sqrt[7]{x^{4}}$ or $(\sqrt[7]{x})^{4}$
(i) $\frac{1}{\sqrt{2}}$
(j) $\frac{1}{\sqrt[5]{7}}$
2. (a) $3^{\frac{1}{2}}$
(g) $6^{\frac{4}{5}}$
3. (a) 5
(b) $19^{\frac{1}{2}}$
(h) $13^{\frac{5}{3}}$
(b) 4
(c) $23^{\frac{1}{7}}$
(i) $a^{\frac{2}{3}}$
(g) 3
(h) $\frac{1}{2}$
(c) 27
(i) 4
(d) x^{2}
(j) $a^{\frac{5}{6}}$
(e) $7^{\frac{2}{3}}$
(d) 1
4. (a) 16
(b) 128
(c) 100
(j) $\frac{1}{8}$
(e)
(I) $7^{-\frac{3}{4}}$
(a) 16
(m) $\frac{2}{3}$
(h) 3
(i) 36
(o) $\frac{125}{512}$
(d) $\frac{1}{4}$
(k) -2
(f) 21.2561
(f) 4
(n) $\frac{12}{7}$
(j) 343
(e) 27
(f) $\frac{1}{125}$
(s) 8
(t) 0
(u) 7
(p) 96
(v) $\frac{5}{6}$
(k) 2
(I) 162
5. (a) $2^{\frac{5}{6}}$
(b) $3^{\frac{8}{3}}$
(c) $x^{2} y^{\frac{1}{2}}$
(w) 3
(r) 3
. (a) 2^{6}
(g) $2 x^{2} y^{\frac{1}{2}}$
(h) $\frac{16 x^{6}}{y^{2}}$
(d) $a^{3} b^{4}$
(x) $\frac{5}{108}$
(f) $x+3 x^{\frac{2}{3}}$
(k) $\frac{y^{\frac{1}{4}}}{x^{\frac{1}{44}}}$
(1) $a^{\frac{0}{2}}$
6. (a) 1.31950791°
(b) 0.172427286
(f) 5.17947468
(c) 90.597458
(d) 2.08008382
(e) 0.341278752
7. (a) $3^{\frac{1}{2}}$
(b) $7^{\frac{1}{4}}$
(c) $3^{\frac{3}{2}}$
(d) $14^{-\frac{1}{3}}$

EXERCISE 1.12

1. (a) 5	(b) 3	(c) 6	(d) 2	(e) 4	
(g) 3	(h) 3	(i) 4	(j) 2		(f) 2
2. (a) 4	(b) 3	(c) 3	(d) 16	(e) 2	(f) 4
(g) 6	(h) 2	(i) $x \in N$	(j) $x \in N, x$ even		
3. (a) 2	(e) 2	(c) 5			
(d) $x=0, \pm 2, \pm 4, \pm 6, \ldots$	(h) $x \in 1$		(f) 1		
(g) 1		(i) 4			

420 FOUNDATIONS OF MATHEMATICS 11

Exercise lob

6. Write each expression as a single power.
a) $\left(3^{2}\right)\left(3^{\frac{1}{2}}\right)$
b) $\left(3^{2}\right)\left(3^{\frac{3}{2}}\right)$
c) $\left(3^{2}\right)\left(3^{\frac{5}{2}}\right)$
d) $\left(3^{2}\right)\left(3^{\frac{7}{2}}\right)$
7. Write each expression as a single power.
a) $\frac{7}{7^{\frac{1}{4}}}$
b) $\frac{7}{7^{\frac{3}{4}}}$
c) $\frac{7}{7^{\frac{5}{4}}}$
d) $\frac{7}{7^{\frac{7}{4}}}$

- 8. Knowledge/Understanding Write each expression as a single power.
Then evaluate the power.
a) $\left(5^{0.2}\right)\left(5^{1.2}\right)$
b) $\left(3^{2.75}\right)\left(3^{1.15}\right)$
c) $\frac{2^{8.66}}{2^{3.12}}$
d) $\left(7^{1.5}\right)^{0.4}$
(9.) Solve each equation.
a) $2^{x+1}=4$
b) $2^{x-1}=8$
c) $3^{x-5}=9$
d) $5^{x+3}=25$
e) $4^{x+2}=16$
f) $2^{2 x+1}=8$
g) $3^{2 x-1}=9$
h) $9^{1-2 x}=81$
(10) a) Solve each equation.
i) $4^{x}=8^{x+3}$
ii) $4^{x}=8^{x+2}$
iii) $4^{x}=8^{x+1}$
iv) $4^{x}=8^{x}$
v) $4^{x}=8^{x-1}$
vi) $4^{x}=8^{x-2}$
vii) $4^{x}=8^{x-3}$
viii) $4^{x}=8^{x-4}$
b) Choose one equation from part a. Explain how you solved the equation.

11. Thinking/Inquiry/Problem Solving Consider the equation $8^{x-2}=64^{x+1}$. Solve the equation in two different ways.
(12) Solve each equation.
a) $2^{2 x}-9\left(2^{x}\right)+8=0$
b) $3^{2 x}-12\left(3^{x}\right)+27=0$
c) $2^{2 x}-2\left(2^{x}\right)-8=0$.
d) $4^{2 x}-15\left(4^{x}\right)-16=0$
e) $2^{2 x}-18\left(2^{x}\right)+32=0$
f) $3^{2 x}+3^{x}-2=0$
g) $3^{2 x}-6\left(3^{x}\right)+9=0$
h) $4^{2 x}-17\left(4^{x}\right)+16=0$
i) $4^{2 x}-16=0$

- 13. Application Scientists have measured many bird eggs. From these data, they have established approximate formulas to represent various measurements. In the two formulas below, m represents the mass of the bird in grams. The formulas give average results. The properties of a particular egg from a particular bird may differ from the calculated result.
Mass of the egg, e grams: $\quad e=0.277 m^{0.770}$
Mass of the eggshell, s grams: $\quad s=0.0482 e^{1.132}$
a) Use the first formula. Write an expression for the mass of the egg as a fraction of the mass of the bird.
b) Use the second formula. Write an expression for the mass of the eggshell as a fraction of the mass of the egg.

Exercise 1.6

7. a) $7^{\frac{3}{4}}$
b) $7^{\frac{1}{4}}$
c) $7^{-\frac{1}{4}}$
d) $7^{\frac{3}{4}}$
8. a) 9.52
b) 72.57
c) 46.53
d) 3.21
9. a) 1
b) 4
c) 7
d) -1
e) 0
f) 1
g) 1.5
h) -0.5
10. a
$\begin{array}{ll}\text { v) } & -9 \\ \text { ii) } & -6\end{array}$
iii) 0
iv) 3
11. a) $0.277 \mathrm{~m}^{-0.23}$
b) $0.0482 e^{0.132}$
12. a) $0.019,0.048,0.206$
b) $-0.133,0.088,0.046$
13. $0.0113 \mathrm{~m}^{-0.128}$
14.

Year	Population
1977	200
1980	221
1983	245
1986	271
1989	300
1992	332
1993	368
1994	500

7. a)
b) 5050
c) 500500
d) 50005000
a) i) 416 ii) -598
iii) 3604
iv) -110
8. a) 1380 b) -637
c) 646
d) 246.5
e) -383.5 f) -137.6
9. Job A

Answers may vary. For example, one assumption could be that the salary increase occurs at the end of the 2nd pay period.
11. Job B pays more over the summer.
12. $\frac{n^{2}+n}{2}$
13. a) 63
b) 690
14. 272
15. a) 44
b) 15
c) 345
17. a) i) 2.807
ii) 0.356
18. a) 19.95 b) 199.5 c) 1995
d) 19950
e) 0.1995 f) 0.01995 g$) \quad 0.001995$
h) 0.000199 .5
16. $\frac{n}{2}[2 a+(n-1) d]$
17. a) $\$ 1520$
b) $\$ 29885$ c) Year 5
d) $\$ 209195$
18. a) $\$ 9000$
b) $\$ 18000$

Self-Check 1.5-1.6

1. a) $1, b$) 16
c) 32
d) -625
e) 1
g) $\frac{1}{9}$
h) -125
2. a) 2.609
b) 15.385
c) 828.956
d) 0.0031
e) 7.622
f) -0.547
3. a) $x^{\frac{31}{20}}$
b) $x^{\frac{7}{6}}$
c) $x^{-\frac{1}{5}}$
d) $x^{\frac{1}{12}}$
; 4. a) 256
b) 64
4. a) 29.365
b) 166.146
5. a) 6
b) 0
6. $-59,38$
7. 90
8. $5,7,9,11,13,15,17,19,21,23,25,27,29,31$
9. a) Doctors prescribe the correct pharmaceuticals, but you cannot read the prescription.
b) Each word has one more letter than the one before.
c) 210
10. a) 125
b) 15
11. $d=2, a=16 ; 16,18,20,22,24,26,28,30,32,34$
$d=4, a=7 ; 7,11,15,19,23,27,31,35,39,43$
