LESSON PLAN

Course: Grade 12 U Advanced Functions

Day: <u>85</u>

Unit/Chapter: Analyzing Change

Topic: <u>Unit</u>

Review

unit review: AW12 self check 1.1 - 1.3 p. 37 self check 1.4 - 1.6 p. 61 review exercises p. 62 self-test p. 67

1. Here is the average airfare for a one-way domestic trip from Ottawa for the years 1988 to 1997.

Year	1988	1989	1990	1991	1992	
Air fare (\$)	132.50	152.90	164.90	172.60	173.90	
Year	Year 1993 1994		1995	1996	1997	
Air fare (\$)	184.60	202.40	199.00	186.50	179.50	

- a) Graph the average airfare as a function of time.
- b) Calculate the average rate of change of price for each 1-year interval from 1988 to 1997.
- c) Over what years are the fares increasing? Is the increase constant? Explain.
- 2. The Van de Graaff generator at Science North can be charged to several thousand volts to make your hair stand on end! The electric field, E newtons per coulomb, is a function of distance, d metres, from the generator. The equation is $E = \frac{6000}{d^2}$.
 - a) Graph the function $E = \frac{6000}{d^2}$.
 - b) Calculate the average rate of change of electric field as a function of distance for each distance interval.
 - i) 0.5 m to 4.5 m

ii) 1.0 m to 5.0 m

iii) 1.5 m to 5.5 m

- iv) 2.0 m to 7.0 m
- c) Estimate the instantaneous rate of change of electric field at 2.5 m from the generator.
- 3. The function $y = x^2 + 3$ is given. Estimate the instantaneous rate of change of y with respect to x at each value of x.
 - a) 1.0

b) -2.0

c) 2.0

PERFORMANCE ASSESSMENT

- 4. Use the equation in exercise 2.
 - a) Estimate the instantaneous rate of change of electric field at 0.75 m. Repeat this calculation at 0.50-m increments up to 4.25 m.
 - b) Graph the instantaneous rate of change of electric field against distance.
 - c) Describe the derivative of the electric field function.
 - d) Compare the graph in part b with the graph in exercise 2a. Describe how each graph shows how the electric field is changing.

1. What is the derivative of each function?

a)
$$y = x + 1$$

b)
$$y = 2x$$

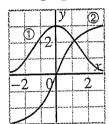
c)
$$y = 0.5x - 3$$

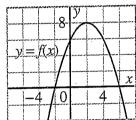
d)
$$y = x^2 + 4$$

e)
$$y = -2x^3$$

f)
$$y = 5x^3$$

- 2. For each derivative in exercise 1, write a different function that has the same derivative.
- 3. a) The derivative of $y = x^2$ is 2x. Use this information to write the derivative of each function. ii) $y = \frac{1}{2}x^2$ iii) $y = -4x^2$ iv) $y = -3x^2$


i)
$$y = 3x^2$$


ii)
$$y = \frac{1}{2}x^2$$

iii)
$$y = -4x^2$$

$$iv) y = -3x^2$$

- h) What rule did you use in part a?
- **4. a)** Sketch the graph of the function y = |x + 3| 4.
 - b) Sketch the graph of the derivative function.
 - c) Where is the derivative function in part b not defined? Explain.
- 5. A function f and its derivative f' are graphed on the same grid (below left). Which graph is the function and which graph is its derivative? Explain.

6. The graph of y = f(x) is given (above right). Sketch the graph of its derivative, y = f'(x).

PERFORMANCE ASSESSMENT

- 7. a) Calculate the instantaneous rate of change of $y = -x^3$ with respect to xat x = 2.5.
 - b) Determine the equation of the tangent to $y = -x^3$ at x = 2.5.
 - c) There is another point on the graph of $y = -x^3$ at which the instantaneous rate of change of y with respect to x is equal to its value at x = 2.5. Determine the equation of the tangent to the curve at this point.

1. For each data set, sketch the graph. Then calculate the average rates of change of y between each consecutive pair of values of x.

			MANUAL PROPERTY AND PROPERTY AN		*****************************	
a)	X	0	1	2	3	4
	V	3	4	7	12	19
	y	3	4	/	12	

					·
b) x	0	5	10	15	20
v	0	16	24	28	30

				ALM NATIONAL PROPERTY AND ADDRESS OF THE PARTY.		
c)	X	-20	-10	0	10	20
	У	10	9	7	4	0

2. The salt content of seawater is its salinity. This is measured in parts per thousand (ppt). These salinity measurements were recorded in the Bay of Fundy.

			-	
Depth, d (m)	0.0	5.0	10.0	15.0
Salinity, S (ppt)	21.0	28.0	30.0	31.0

Calculate the average rate of change of salinity with depth over each interval.

- a) 0.0 m to 15.0 m
- b) 0.0 m to 5.0 m
- c) 10.0 m to 15.0 m
- 3. The drag, D kilonewtons, experienced by a racing car is a function of the speed, ν metres per second, of the car. The equation is $D = 0.08 \nu^2$.
 - a) Graph the function.
 - b) Calculate the average rate of change of drag with respect to speed from v = 20 m/s to v = 50 m/s.
 - c) Estimate the instantaneous rate of change of drag with respect to speed when v = 35 m/s.
 - 4. Calculate the average rate of change of each function between x = 1and x = 5.
 - a) $y = x^2 + x$
- **b)** $y = \sqrt{x+3}$ **c)** $y = \frac{6}{x}$
- 5. For each function, estimate the instantaneous rate of change of y with respect to x at x = -2 and at x = 3.
 - a) y = 4x
- **b)** $y = x^2 + 1$
- c) $y = -x^3$
- d) y = 3x + 20
- **6.** Estimate the instantaneous rate of change of $y = 5x^2$ at x = 0.5.

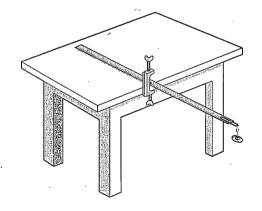
63

Review Exercises

- 7. A car travelling at 50 km/h can stop in about 23 m. A car travelling at 100 km/h needs about 85 m to stop. Here are the data for stopping distances at different speeds.
 - a) Graph stopping distance against speed.
 - b) The equation $d = 0.01v^2 0.25v + 10$ expresses the stopping distance as a function of speed. Use the equation to estimate the instantaneous rate of change of stopping distance for each speed. Use 1-km/h following intervals.

i) 2	20	km/	'n
------	----	-----	----

ii) 40 km/h


iii) 60 km/h

iv) 80 km/h

- v) 100 km/h
- c) Graph the data from part b to make a graph that approximates the derivative function. What special feature does the derivative appear to have?

Speed, v (km/h)	Average stopping distance, d (m)
20	9
30	12
40	16
50	23
60	31
70	42
80	54
90	69
100	85
110	104
120	124
130	147

- d) Compare the graphs in parts a and c. Describe how each graph shows how the stopping distance changes.
- 8. When a person stands at the end of a diving board, the board bends and feels bouncy. This situation can be modelled with a metre stick and some weights. The metre stick is clamped to a table with a length, L centimetres, extended over the edge. The weights are suspended from a paper clip taped to the end of the stick. The downward deflection, d millimetres, of the stick is recorded.

L (cm)	5	10	15	20	25	30	35
d (mm)	0	1	2	3	7 .	13	21
L (cm)	40	45	50	55	60	65	
d (mm)	34	49	68	93	122	157	

- a) Graph downward deflection against length.
- b) Estimate the instantaneous rate of change of deflection every 5 cm, starting at 7.5 cm. Use 5-cm centred intervals.

- c) Graph the rate of change of deflection as a function of length.
- d) Where is the rate of change of deflection greatest? Use the results of parts b and c to justify your answer.
- 9. Determine the derivative of each function.

a)
$$y = -2$$

b)
$$y = 4x^3$$

c)
$$y = 3 - x^2$$

c)
$$y = 3 - x^2$$
 d) $y = 7x + 5$

10. For each function, calculate the value of the derivative at x = 0.5.

a)
$$y = x^2 + 5$$

b)
$$y = -3x + 2$$
 c) $y = x^4$

c)
$$y = x^4$$

d)
$$y = -2x^2 + 1$$

- 11. Determine the equation of the tangent to the graph of the function $y = -4x^2 + 3$ at x = 1.
- 12. Determine the derivative of each function.

a)
$$y = \sqrt{x} + 3$$

b)
$$y = -\frac{1}{x}$$

c)
$$y = 2 \sin x$$

$$d) y = \cos x - 4$$

13. For each function, determine the equation of the tangent to the graph of the function at x = 4.

a)
$$y = 3\sqrt{x}$$

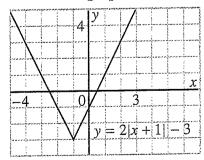
b)
$$y = \frac{2}{x}$$

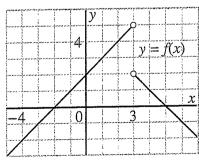
c)
$$y = \sqrt{x} - 4$$

14. For each function y, determine the value(s) of x where y' = 2, if it exists.

a)
$$y = x^2 + 1$$

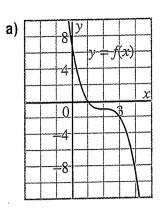
b)
$$y = x^3$$

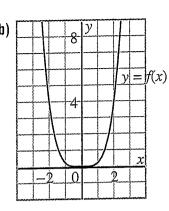

c)
$$y = 4x - 1$$

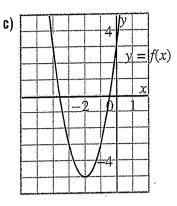

$$d) y = 2\sqrt{x}$$

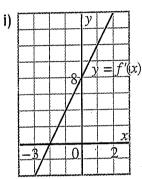
e)
$$y = -\frac{4}{x}$$

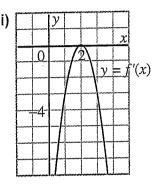
$$f) y = 2x$$

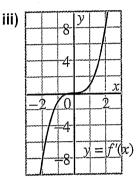

- 15. The graph of the function y = 2|x + 1| 3 is shown below left.
 - a) Describe the graph.
 - b) Describe the derivative function.
 - c) Sketch the graph of the derivative function.

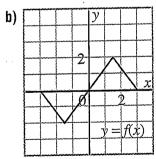


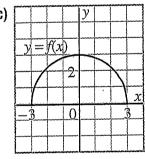


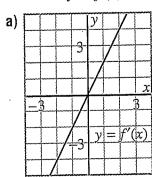

- 16. Sketch the graph of the derivative of the function above right.
- 17. The graphs of three functions (parts a to c) and their derivatives (parts i to iii) are shown on the next page. For each function, identify the graph of its derivative. Explain.

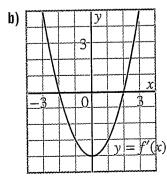

Review Exercises

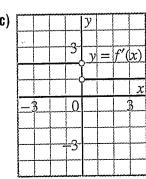




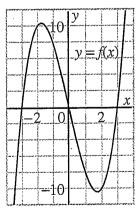


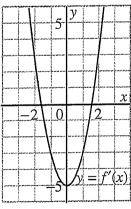

- **18.** List 4 different functions y = f(x) for which y' = 3.
- 19. List 4 different functions y = f(x) for which y' = 2x.
- 20. For each function y = f(x), sketch the derivative of y as a function of x.


a)					y		7
,				1	1		
	у	=f	(x)				
				2-		1_	
				3			
						1	
							 \boldsymbol{x}
			_	0			
			I		<u> </u>		



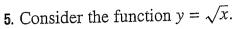
21. For each derivative function y = f'(x), sketch a possible graph of the function y = f(x).





1. **Knowledge/Understanding** Statistics Canada has documented the Canadian infant mortality rate for many years. The infant mortality rate is the number of deaths of children up to 1 year of age per 1000 live births.

Year	1960	1965	1970	1975	1980	1985	1990	1995
Infant mortality rate	27.3	23.5	18.7	14.3	10.1	7.8	6.7	6.1


- a) Calculate the average rate of change of the mortality rate for each 5-year period.
- b) Describe how the average rates of change show that the mortality rate is falling.
- c) Describe how the average rates of change show that the mortality rate is levelling off.
- d) Explain why the infant mortality rate in Canada has changed substantially since 1960.
- **2.** Consider the function $y = x^2 + 4$.
 - a) Estimate the instantaneous rate of change of y with respect to x at x = 1.
 - b) Determine the derivative of y with respect to x.
 - c) Calculate the value of y' at x = 1.
 - d) Explain why your answers for parts a and c should be the same.
- **3. Communication** Explain how to sketch the graph of the derivative of the function below left; then sketch the graph.

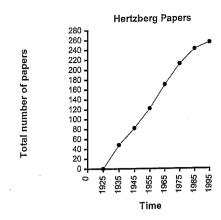
4. The graph of the derivative of a function is shown above right. Sketch a possible graph of the function.

Self-Test

a) Calculate the average rate of change of y with respect to x over each interval. Give the answers to 2 decimal places where necessary.

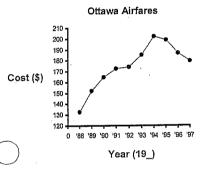
i)
$$x = 0$$
 to $x = 10$

ii)
$$x = 0$$
 to $x = 1$


iii)
$$x = 0$$
 to $x = 0.1$

iv)
$$x = 0$$
 to $x = 0.01$

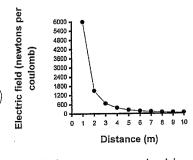
- b) Explain why the instantaneous rate of change does not exist at x = 0.
- **6. Application** A wood stove operates efficiently at flue temperatures between 150° C and 200° C (423K and 473K). Its energy output is given by the function $E = \frac{T^4}{5\ 000\ 000} 1600$, where E is the energy output in watts and T is the Kelvin temperature.
 - a) Determine the average rate of change of energy output with temperature between 423K and 473K.
 - b) Estimate the instantaneous rate of change of energy output at 450K.
- 7. Determine the equation of the tangent to the graph of $y = -2x^2 + 4$ at the point (1, 2).
- 8. Thinking/Inquiry/Problem Solving Consider the function $y = \frac{1}{x} + 2$.
 - a) Graph the function for x between -5 and 5.
 - b) Describe the graph of the function for values of x greater than 5 and less than -5.
 - c) Sketch the graph of the derivative y'.
 - d) Use the behaviour of y' for large values of x to explain your answer in part b.


PERFORMANCE ASSESSMENT

- **9.** The cross section of a hill is parabolic with equation $y = -0.1x^2 + 4$.
 - a) Describe what x and y represent.
 - b) Explain why the steepness of the hill at a point on the hill is given by the derivative of y with respect to x.
 - c) A ramp is placed on the hill so that one end of the ramp is a tangent to the hill at the point (-4, 2.4). Determine the equation of the ramp.
 - d) Determine the coordinates of the point where the other end of the ramp meets the level ground.

Self-Check 1.1-1.3, page 37

1. a)

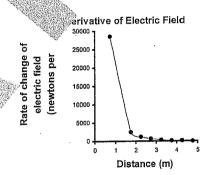


b)		
ſ	Year	Avera ge of
L		
	1988–1989	<u>/</u> -20.4
	1989–1990	12/
Г	1990–1991	
Γ	1991-1992	
	1992-1993	16
Γ	1993–1	17.80
Γ	19°	–3.40
Γ	-1996	<u>–12.50</u>
		<i>–</i> 7.00
_	THE STATE OF THE SECTION OF THE SECT	V00004

c) The fare increase is x

m 1988 to 1994. No, the stant.

2. a)



b) i) -5926 newtons per coulomb/m ii) -1440 newtons per coulomb/m

- iii) -617 newtons per coulomb/m
- iv) -276 newtons per coulomb/m
- c) -768 newtons per coulomb/m

4. a) Estimates may vary. The estimates below were calculated using a 0.0001-m interval.

carculated	using a 0.0001-iii iiitci va
Distance	Instantaneous rate of
(m)	change of electric
	field
	(:s/coulomb/m)
0.75	-28 439
1.25	143
1.75	
2.25	- 1
2.75	_57,
-3.25	-350
3.75	-228
74 PS	-156
	Distance (m) 0.75 1.25 1.75 2.25 2.75 3.25

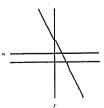
1.4 Exercises, page 43

1. a)
$$y' = 3$$

b)
$$y' = -0.5$$

c)
$$y' = -1$$

d)
$$y' = 1$$


e)
$$y' = 2x$$

f)
$$y' = 3x^2$$

- 2. a) The graph of f is a linear function with a positive slope.
 - b) The graph of f is a linear function with a negative slope.

3. a)
$$y' = -2$$

b)

c) Answers may vary. y = -2x + 5

1. a)
$$y' = 1$$

b)
$$y' = 2$$

c)
$$y' = 0.5$$

d) y' = 2x

e)
$$y' = -6x^2$$

f)
$$y' = 15x^2$$

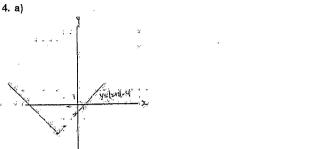
2. Answers may vary. Sample answers follow:

a)
$$y = x - 3$$

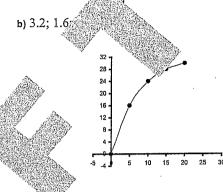
b)
$$y = 2x + 4$$

c)
$$y = 0.5x$$

d)
$$y = x^2 - 1$$

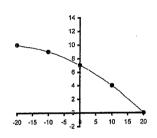

e)
$$y = 2x + 4$$

f)
$$y = 5x^3 - 2$$

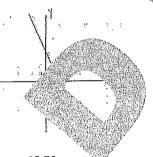

3. a) i)
$$y' = 6x$$
 ii) $y' = x$

iii)
$$y' = -8x$$
 iv) $y' = -6x$

b) Vertical stretch rule

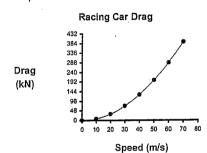


b)


c) -0.1, -0.2; -0.3; -0.4

1. a) 1; 3; 5; 7

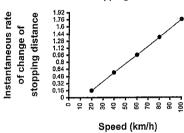
- c) At x = -3
- 5. ② is f; ① is f'.


6.

- 7. a) -18.75
 - c) y = -18.75x 31.25
- b) y = -18.75x + 31.25

- 2. a) 0.67 ppt/m
- b) 1.4 ppt/m
- c) 0.2 ppt/m

3. a)


- b) 5.6 kN/m/s
- c) 5.6 kN/m/s

- 4. a) 7
- b) 0.21
- c) -1.2
- **d)** 0

- 5. Estimates may vary.
 - a) 4; 4
- b) -4; 6
- c) -12; -27
- d) 3; 3
- 6. Estimates may vary. 5

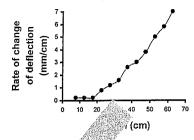
- b) i) 0.16 m/km/hii) 0.56 m/km/hiii) 0.96 m/km/hiv) 1.36 m/km/hv) 1.76 m/km/h
- c) The graph of the derivative function appears to be linear.

Derivative of Stopping Distances

8. a)

Downward Reflection

Downward reflection (min)


reflection (min)

Personal control of the control of t

b)			
ſ	Length	imated	
	(cm)	າus rate	
		oi of	
1		dei n	
	<u> </u>	<u>(n. in)</u>	
	7.5		
	12.5	₹ 9.2	
	17.5	0.2	
	22.5	0.8	
Ĺ	27.5	1.2	
	32.5	1.6	
	37.5	2.6	
	42.5	3.0	
	47.5	3.8	
	52.5	5.0	
_[57.5	5.8	
1	62.5	7.0	

b)

Derivative of Downward Deflection

c) The rate of lengths

f deflection is greatest between

9. a)
$$y' = 0$$

$$y' = -2x$$

d)
$$y' = 7$$

d)
$$-2$$

11
$$8x + 7$$

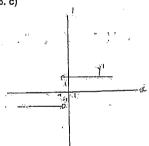
a)
$$y' = \frac{1}{x}$$

b)
$$y' = \frac{1}{x^2}$$

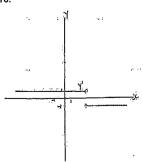
d)
$$y' = -\sin x$$

b)
$$y = -\frac{1}{8}x +$$

$$y = \frac{1}{4}x - 3$$

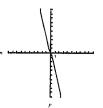

14. a)
$$\frac{1}{4}$$

b)
$$\pm \sqrt{\frac{2}{3}}$$

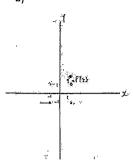

c) No values

f) All real values

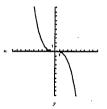
15. c)

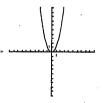


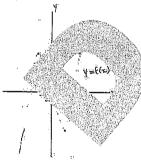
16.

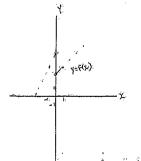


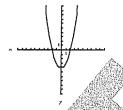
18. Answers may vary.
$$y = 3x$$
, $y = 3x + 1$, $y = 3x - 1$, $y = 3x - 2$


19. Answers may vary.
$$y = x^2$$
, $y = x^2 + 1$, $y = x^2 - 1$, $y = x^2 - 2$

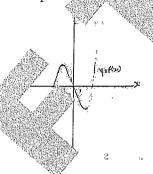



c)


21. Graphs may vary.

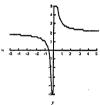


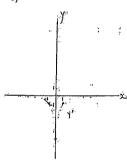
c)



b)
$$v' = 2x$$

1. a)
$$-0.76$$
, -0.96 , -0.88 , -0.84 , -0.46 , -0.22 , -0.12
2. a) 2 b) $y' = 2x$ c) $y' = 2$


4. Graphs mg


- 5. a) i) 0.316
- ii) 1
- iii) 3.162
- iv) 10
- b) The function $y = \sqrt{x}$ has a vertical tangent at x = 0. a) 72.2 W/K b) 72.9 W/K

7.
$$y = -4x + 6$$

8. a)

- b) For values of x greater than 5, the y-values get closer and closer to 2, but never reach 2. For values of x less than -5, the y-values get closer and closer to 2 but never reach 2.
- c)

- 9. c) x = 0.8x + 5.6d) (-7, 0)