Unit/Chapter: Measurement

Lesson: $\quad 54$
Topic: Volumes and Surface Area of Spheres

\# homework check: NPM 9 p. 455 \# 3, 6, 7, 10, 13, 14, 15, 17

It note: Volumes and Surface Area of Spheres

The surface area of a shape made from the combination of other three dimensional figures is the sum of the areas of the exposed surfaces. Likewise, the volume of a shape made from the combination of other three dimensional figures is the sum of the volumes of the other figures. The formulas for the surface area and volume of a sphere are:

$$
S A=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}
$$

Again, notice the relationship between the circle, cylinder, and sphere. Greek mathematician Archimedes proved that the surface area of a sphere is exactly the same as a cylinder of the same dimension without the ends. Therefore, the cylinder that encloses the sphere has a height of 2 r . The surface area would then be:

$$
\begin{aligned}
& S A=2 \pi r(2 r) \\
& S A=4 \pi r^{2}
\end{aligned}
$$

Mathematicians also show that the volume of a sphere is two thirds the volume of a cylinder with the same radius and height. Again, we know that the height of the cylinder is 2 r. The volume would then be:

$$
\begin{aligned}
V & =\frac{2}{3} \pi r^{2}(2 r) \\
V & =\frac{4}{3} \pi r^{3}
\end{aligned}
$$

For example, calculate the volume and surface area of a sphere with a radius of 13 mm .

$$
\begin{aligned}
& S A=4 \pi(13)^{2} \\
& S A=2123.7 \mathrm{~mm}^{2} \\
& V=\frac{4}{3} \pi(13)^{3} \\
& V=9202.8 \mathrm{~mm}^{3}
\end{aligned}
$$

[^0]
[^0]: \# homework assignment: NPM 9 p. 470 \# 3, 5 -9, 11, 13, 14

