Grade 10 Academic Math
Unit: _ Analytic Geometry

Lesson: 3-5
Topic: Simplifying Radicals

\# homework check: Principles of Mathematics 10 p. 91 \# 2-6, 8, 10, 13, 14, 18

\# note: Simplifying Radicals

The steps when simplifying radicals are necessary when working with anything under a square root sign. Taking a square root when the number is a perfect square is easy - but when the number is not a perfect square, we need to simplify. To simplify, we still must know which numbers are perfect squares. For example, the following chart helps when simplifying radicals.

Number	Square
1	1
2	4
3	9
4	16
5	25
6	36
7	49
8	64
9	81
10	100
11	121
12	144

It is important to know the following:

$$
\begin{aligned}
10 & =5 \times 2 \\
& =\sqrt{25} \times \sqrt{4} \\
& =\sqrt{25 \times 4} \\
& =\sqrt{100}
\end{aligned}
$$

Therefore, $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$ and we use this principle to reduce radicals. Radicals can be written in two forms, an entire radical where everything is under the square root sign or a mixed radical where one number may be in front of the square root sign and only a portion is left under the root sign.

Examples) Simplify each of the following radicals.
a) $\sqrt{50}=$
b) $\sqrt{18}=$
$=\sqrt{25} \sqrt{2}$
$=\sqrt{9} \sqrt{2}$
$=5 \sqrt{2}$
$=3 \sqrt{2}$
c) $\sqrt{54}=$
$=\sqrt{9} \sqrt{6}$
$=3 \sqrt{6}$

Change each of the following to an entire radical.
a) $4 \sqrt{2}=$
b) $5 \sqrt{3}=$
$=\sqrt{16} \sqrt{2}$
$=\sqrt{25} \sqrt{3}$
$=\sqrt{32}$
$=\sqrt{75}$
c) $10 \sqrt{5}=$
$=\sqrt{100} \sqrt{5}$
$=\sqrt{500}$

Complete each operation and simplify.
a) $2 \sqrt{3} \times 3 \sqrt{3}=$
b) $-2 \sqrt{3} \times 4 \sqrt{6}=$
c) $2 \sqrt{12} \times \sqrt{2}=$
$=6 \sqrt{9}$
$=-8 \sqrt{18}$
$=2 \sqrt{24}$
$=6 \times 3$
$=-8 \sqrt{9} \sqrt{3}$
$=2 \sqrt{4} \sqrt{6}$
$=18$
$=-24 \sqrt{3}$
$=4 \sqrt{6}$
\# homework assignment: FM 10 p. 21 \# 1-7

EXAMPLE 4. Simplify.

(a) $3 \sqrt{2} \times 2 \sqrt{7}$

SOLUTION:

(a) $3 \sqrt{2} \times 2 \sqrt{7}=3 \times 2 \times \sqrt{2} \times \sqrt{7}$

$$
=6 \sqrt{14}
$$

EXERCISE 1.5

A 1. Evaluate.
(a) $\sqrt{16}$
(b) $\sqrt{49}$
(c) $\sqrt{81}$
(d) $\sqrt{100}$
(e) $\sqrt{121}$
(f) $\sqrt{\frac{4}{9}}$
(i) $\sqrt{\frac{36}{49}}$
(g)
$\sqrt{\frac{36}{25}}$
(h) $\sqrt{\frac{64}{81}}$
2. Simplify.
(a) $\sqrt{3} \times \sqrt{2}$
(b) $\sqrt{6} \times \sqrt{11}$
(c) $\sqrt{3} \times \sqrt{5}$
(d) $\sqrt{5} \times \sqrt{7}$
(e) $\sqrt{11} \times \sqrt{7}$
(f) $\sqrt{5} \times \sqrt{6}$
(g) $\sqrt{6} \times \sqrt{7}$
(h) $\sqrt{2} \times \sqrt{11}$
(i) $\sqrt{11} \times \sqrt{13}$
(j) $\sqrt{5} \times \sqrt{17}$
3. Simplify.
(a) $3 \sqrt{2} \times 2 \sqrt{5}$
(b) $5 \sqrt{7} \times \sqrt{3}$
(c) $2 \sqrt{5} \times 2 \sqrt{3}$
(d) $6 \sqrt{5} \times 7 \sqrt{2}$
(e) $2 \sqrt{5} \times 3 \sqrt{6}$
(f) $4 \sqrt{7} \times 2 \sqrt{5}$
(g) $6 \sqrt{2} \times 2 \sqrt{5}$
(h) $2 \sqrt{2} \times 3 \sqrt{3}$
(i) $3 \sqrt{2} \times 5 \sqrt{3}$
(j) $4 \sqrt{3} \times 2 \sqrt{7}$

B 4. Change to mixed radicals in simplest form.
(a) $\sqrt{12}$
(b) $\sqrt{18}$
(c) $\sqrt{20}$
(d) $\sqrt{32}$
(e) $\sqrt{45}$
(f) $\sqrt{75}$
(g) $\sqrt{50}$
(h) $\sqrt{1024}$
(i) $\sqrt{72}$
(j) $\sqrt{68}$
(k) $\sqrt{200}$
(I) $\sqrt{24}$
5. Using $\sqrt{2} \doteq 1.414, \sqrt{3} \doteq 1.732$, and $\sqrt{5} \doteq 2.236$, approximate the following to the nearest hundredth by first expressing as a mixed radical.
(a) $\sqrt{8}$
(b) $\sqrt{32}$
(c) $\sqrt{24}$
(d) $\sqrt{50}$
(e) $\sqrt{40}$
(f) $\sqrt{27}$
6. Change to entire radicals.
(a) $2 \sqrt{3}$
(b) $5 \sqrt{2}$
(c) $3 \sqrt{5}$
(d) $5 \sqrt{3}$
(e) $3 \sqrt{11}$
(f) $5 \sqrt{10}$
(g) $10 \sqrt{3}$
(h) $2 \sqrt{7}$
(i) $5 \sqrt{8}$
(j) $3 \sqrt{14}$
(k) $6 \sqrt{7}$
(I) $11 \sqrt{2}$
(b) $2 \sqrt{5} \times 3 \sqrt{15}$
(b) $2 \sqrt{5} \times 3 \sqrt{15}=6 \sqrt{75}$

$$
\begin{aligned}
& =6 \times \sqrt{25} \times \sqrt{3} \\
& =6 \times 5 \times \sqrt{3} \\
& =30 \sqrt{3}
\end{aligned}
$$

7. Simplify.
(a) $\sqrt{2} \times \sqrt{6}$
(b) $\sqrt{10} \times \sqrt{6}$
(c) $\sqrt{7} \times \sqrt{14}$
(d) $\sqrt{3} \times \sqrt{6}$
(e) $\sqrt{15} \times \sqrt{5}$
(f) $\sqrt{5} \times \sqrt{50}$
(g) $\sqrt{5} \times 2 \sqrt{3}$
(h) $5 \sqrt{2} \times 3 \sqrt{3}$
(i) $2 \sqrt{10} \times 5 \sqrt{3}$
(j) $5 \sqrt{7} \times 2 \sqrt{14}$
(k) $5 \sqrt{3} \times 2 \sqrt{15}$
(I) $3 \sqrt{3} \times 2 \sqrt{12}$
(m) $\sqrt{6} \times \sqrt{3} \times \sqrt{2}$
(n) $\sqrt{5} \times \sqrt{2} \times \sqrt{15}$
(o) $\sqrt{10} \times \sqrt{15} \times \sqrt{6}$
(p) $3 \sqrt{2} \times 2 \sqrt{6} \times \sqrt{3}$
(q) $3 \sqrt{5} \times 2 \sqrt{3} \times 3 \sqrt{5}$
(r) $3 \sqrt{6} \times 2 \sqrt{3} \times 4 \sqrt{2}$

MICRO MATH

The following BASIC program will change an entire radical to a mixed radical. The expression under the radical is called the radicand. The radical sign will be printed as RAD ().

NEW

```
IOD REM CHANGING AN ENTIRE RADICAL
lQI REM TO A MIXED RADICAL
1,0 PRINT "UHAT IS THE RADICAND";
l120 INPUT N NOT INTSQR(N)) TO I STEP -1,
lug FOR I = INT(SQR(N)) TO I STEP - - I 
```



```
I60 B=N/(I*I)
l70 I=I 
l8O NEXT I THEN PRINT "NO MIXED
\q\ IF A=I THEN PRINT "NO
20ロ PRINT "RAD(";N; ") ="; A;
2แ\squareG END
RUN
```

