Lesson Plan

Lesson: <u>3 - 5</u>

Grade 10 Academic Math

Unit: <u>Analytic Geometry</u>

Topic: <u>Simplifying Radicals</u>

homework check: <u>Principles of Mathematics 10</u> p. 91 # 2 – 6, 8, 10, 13, 14, 18

i note: <u>Simplifying Radicals</u>

The steps when simplifying radicals are necessary when working with anything under a square root sign. Taking a square root when the number is a perfect square is easy – but when the number is not a perfect square, we need to simplify. To simplify, we still must know which numbers are perfect squares. For example, the following chart helps when simplifying radicals.

Number	Square
1	1
2	4
3	9
4	16
5	25
6	36
7	49
8	64
9	81
10	100
11	121
12	144

It is important to know the following:

$$10 = 5 \times 2$$
$$= \sqrt{25} \times \sqrt{4}$$
$$= \sqrt{25 \times 4}$$
$$= \sqrt{100}$$

Therefore, $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ and we use this principle to reduce radicals. Radicals can be written in two forms, an entire radical where everything is under the square root sign or a mixed radical where one number may be in front of the square root sign and only a portion is left under the root sign.

Examples) Simplify each of the following radicals.

a)
$$\sqrt{50} =$$

 $= \sqrt{25}\sqrt{2}$
b) $\sqrt{18} =$
 $= \sqrt{9}\sqrt{2}$
c) $\sqrt{54} =$
 $= \sqrt{9}\sqrt{6}$
 $= 3\sqrt{2}$
c) $\sqrt{54} =$
 $= \sqrt{9}\sqrt{6}$
 $= 3\sqrt{6}$

Change each of the following to an entire radical.

a)
$$4\sqrt{2} =$$

 $= \sqrt{16}\sqrt{2}$
 $= \sqrt{32}$
b) $5\sqrt{3} =$
 $= \sqrt{25}\sqrt{3}$
 $= \sqrt{75}$
c) $10\sqrt{5} =$
 $= \sqrt{100}\sqrt{5}$
 $= \sqrt{500}$

Complete each operation and simplify.

a)
$$2\sqrt{3} \times 3\sqrt{3} =$$

 $= 6\sqrt{9}$
 $= 6 \times 3$
 $= 18$
b) $-2\sqrt{3} \times 4\sqrt{6} =$
 $= -8\sqrt{18}$
 $= -8\sqrt{9}\sqrt{3}$
 $= -24\sqrt{3}$
c) $2\sqrt{12} \times \sqrt{2} =$
 $= 2\sqrt{24}$
 $= 2\sqrt{4}\sqrt{6}$
 $= 4\sqrt{6}$

♯ homework assignment: <u>FM 10</u> p. 21 # 1 − 7

EXAMPLE 4. Simplify. (a) $3\sqrt{2} \times 2\sqrt{7}$

SOLUTION:

(a) $3\sqrt{2} \times 2\sqrt{7} = 3 \times 2 \times \sqrt{2} \times \sqrt{7}$ = $6\sqrt{14}$

EXERCISE 1.5

đ	
A 1. Evaluate.	7. Simplify.
(a) $\sqrt{16}$ (b) $\sqrt{49}$ (c) $\sqrt{81}$	$(a) \sqrt{2} \times \sqrt{6} \qquad (b) \sqrt{10} \times \sqrt{6} (c) \sqrt{7} \times \sqrt{14} \qquad (d) \sqrt{3} \times \sqrt{6}$
(d) $\sqrt{100}$ (e) $\sqrt{121}$ (f) $\sqrt{\frac{4}{9}}$	(c) $\sqrt{15} \times \sqrt{5}$ (f) $\sqrt{5} \times \sqrt{50}$
(g) $\sqrt{\frac{36}{25}}$ (h) $\sqrt{\frac{64}{81}}$ (i) $\sqrt{\frac{36}{49}}$ 2. Simplify. (a) $\sqrt{3} \times \sqrt{2}$ (b) $\sqrt{6} \times \sqrt{11}$ (c) $\sqrt{3} \times \sqrt{5}$ (d) $\sqrt{5} \times \sqrt{7}$ (e) $\sqrt{11} \times \sqrt{7}$ (f) $\sqrt{5} \times \sqrt{6}$ (g) $\sqrt{6} \times \sqrt{7}$ (h) $\sqrt{2} \times \sqrt{11}$ (i) $\sqrt{11} \times \sqrt{13}$ (j) $\sqrt{5} \times \sqrt{17}$	(g) $\sqrt{5} \times 2\sqrt{3}$ (h) $5\sqrt{2} \times 3\sqrt{3}$ (i) $2\sqrt{10} \times 5\sqrt{3}$ (j) $5\sqrt{7} \times 2\sqrt{14}$ (k) $5\sqrt{3} \times 2\sqrt{15}$ (l) $3\sqrt{3} \times 2\sqrt{12}$ (m) $\sqrt{6} \times \sqrt{3} \times \sqrt{2}$ (n) $\sqrt{5} \times \sqrt{2} \times \sqrt{15}$ (o) $\sqrt{10} \times \sqrt{15} \times \sqrt{6}$ (p) $3\sqrt{2} \times 2\sqrt{6} \times \sqrt{3}$ (q) $3\sqrt{5} \times 2\sqrt{3} \times 3\sqrt{5}$ (r) $3\sqrt{6} \times 2\sqrt{3} \times 4\sqrt{2}$
3. Simplify. (a) $3\sqrt{2} \times 2\sqrt{5}$ (b) $5\sqrt{7} \times \sqrt{3}$ (c) $2\sqrt{5} \times 2\sqrt{3}$ (d) $6\sqrt{5} \times 7\sqrt{2}$ (e) $2\sqrt{5} \times 3\sqrt{6}$ (f) $4\sqrt{7} \times 2\sqrt{5}$ (g) $6\sqrt{2} \times 2\sqrt{5}$ (h) $2\sqrt{2} \times 3\sqrt{3}$ (i) $3\sqrt{2} \times 5\sqrt{3}$ (j) $4\sqrt{3} \times 2\sqrt{7}$ B 4. Change to mixed radicals in simplest form. (a) $\sqrt{12}$ (b) $\sqrt{18}$ (c) $\sqrt{20}$ (d) $\sqrt{32}$ (e) $\sqrt{45}$ (f) $\sqrt{75}$ (g) $\sqrt{50}$ (h) $\sqrt{1024}$ (i) $\sqrt{72}$ (j) $\sqrt{68}$ (k) $\sqrt{200}$ (l) $\sqrt{24}$	The following BASIC program will change an entire radical to a mixed radical. The expression under the radical is called the radicand. The radical sign will be printed as RAD().
5. Using $\sqrt{2} \doteq 1.414$, $\sqrt{3} \doteq 1.732$, and $\sqrt{5} \doteq 2.236$, approximate the following to the nearest hundredth by first expressing as a mixed radical. (a) $\sqrt{8}$ (b) $\sqrt{32}$ (c) $\sqrt{24}$ (d) $\sqrt{50}$ (e) $\sqrt{40}$ (f) $\sqrt{27}$ 6. Change to entire radicals. (a) $2\sqrt{3}$ (b) $5\sqrt{2}$ (c) $3\sqrt{5}$ (d) $5\sqrt{3}$ (e) $3\sqrt{11}$ (f) $5\sqrt{10}$ (g) $10\sqrt{3}$ (h) $2\sqrt{7}$ (i) $5\sqrt{8}$ (j) $3\sqrt{14}$ (k) $6\sqrt{7}$ (l) $11\sqrt{2}$	LOD REM CHANGING AN ENTIRE RADICAL LOL REM TO A MIXED RADICAL LOD PRINT "WHAT IS THE RADICAND"; LOD INPUT N LOD FOR I = INT(SQR(N)) TO L STEP -L L40 IF INT(N/(I*I))<>N/(I*I) THEN L80 L50 A=I L60 B=N/(I*I) L70 I=L L60 NEXT I L90 IF A=L THEN PRINT "NO MIXED RDICAL" : GOTO 2L0 200 PRINT "RAD("; N; ") ="; A; "RAD("; B; ")" 2L0 END RUN

REAL NUMBERS 21

(b) $2\sqrt{5} \times 3\sqrt{15}$

Ì

(b) $2\sqrt{5} \times 3\sqrt{15} = 6\sqrt{75}$

 $= 6 \times \sqrt{25} \times \sqrt{3}$ $= 6 \times 5 \times \sqrt{3}$ $= 30\sqrt{3}$