Lesson Plan

Lesson: <u>3 - 4</u>

Grade 10 Academic Math

Unit: <u>Analytic Geometry</u>

Topic: <u>Equation of a Circle</u>

homework check: <u>Principles of Mathematics 10</u> p. 86 # 5ii), 6, 9, 12, 13

i note: <u>Equations of Circles</u>

It is important to note that the equation for a circle can also be related to the distance formula. By substituting the origin as our second point, we find the length of the radius of a circle is $r = \sqrt{x^2 + y^2}$ which gives us $r^2 = x^2 + y^2$ as the equation of the circle centred at the origin. examples)

a) Write the equation of the circle centred at the origin with the point P(-5,6) on the circumference.

STEP 1: Find the length of the radius of the circle.

$$d = \sqrt{(0 - (-5))^{2} + (0 - 6)^{2}}$$
$$d = \sqrt{25 + 36}$$
$$d = \sqrt{61}$$

Note: Do not use decimal approximations in your equations!

STEP 2: Write the equation

$$\sqrt{61} = x^2 + y^2$$

b) Find the x and y intercepts of the circle with equation $x^2 + y^2 = 169$ *Note: x intercepts occur when the value of y is zero and y intercepts occur when the value of x is zero

x intercepts	y intercepts
$x^{2} + (0)^{2} = 169$	$\left(0\right)^2 + y^2 = 169$
$x^2 = 169$	$y^2 = 169$
$x = \pm \sqrt{169}$	$y = \pm \sqrt{169}$
$x = \pm 13$	$y = \pm 13$
(-13,0) and $(13,0)$	(0,-13) and $(0,13)$

homework assignment: <u>Principles of Mathematics 10</u> p. 91 # 2 – 6, 8, 10, 13, 14, 18