Grade 10 Academic Math
Unit: Analytic Geometry

Lesson: 3-4
Topic: Equation of a Circle

\# homework check: Principles of Mathematics 10 p. 86 \# 5ii), 6, 9, 12, 13

\# note: Equations of Circles

It is important to note that the equation for a circle can also be related to the distance formula. By substituting the origin as our second point, we find the length of the radius of a circle is $r=\sqrt{x^{2}+y^{2}}$ which gives us $r^{2}=x^{2}+y^{2}$ as the equation of the circle centred at the origin.
examples)
a) Write the equation of the circle centred at the origin with the point $P(-5,6)$ on the circumference.

STEP 1: Find the length of the radius of the circle.
$d=\sqrt{(0-(-5))^{2}+(0-6)^{2}}$
$d=\sqrt{25+36}$
$d=\sqrt{61}$
Note: Do not use decimal approximations in your equations!
STEP 2: Write the equation

$$
\sqrt{61}=x^{2}+y^{2}
$$

b) Find the x and y intercepts of the circle with equation $x^{2}+y^{2}=169$
*Note: x intercepts occur when the value of y is zero and y intercepts occur when the value of x is zero
x intercepts y intercepts
$x^{2}+(0)^{2}=169 \quad(0)^{2}+y^{2}=169$
$x^{2}=169$
$y^{2}=169$
$x= \pm \sqrt{169}$
$y= \pm \sqrt{169}$
$x= \pm 13$
$y= \pm 13$
$(-13,0)$ and $(13,0)$
$(0,-13)$ and $(0,13)$
\# homework assignment: Principles of Mathematics 10 p. 91 \# $2-6,8,10,13,14,18$

