Unit: Trigonometry

Lesson: $\underline{\text { 7-3 }}$

Topic: Primary Trig Ratios

\# homework check: Principles of Mathematics 10 p. 386 \# 2, 4, 5, 7, 9, 11 - 13

\# note: Primary Trig Ratios

The angle in a right triangle designates the name of the sides. The hypotenuse is the only side that does not change even if the angle changes! The word adjacent means beside and is located beside the angle. The name of the opposite side shows its location opposite the angle. For example, for each triangle, label the hypotenuse, opposite and adjacent sides.
a)

b)

Writing the ratios of sides in a right angled triangle requires knowing not only the names of the sides, but also how to name the sides and angles given a specific triangle. The acronym SOH CAH TOA helps us remember the primary trig ratios for right angles triangles.

SOH $\sin \vartheta=\frac{\text { opposite }}{\text { hypotenuse }} \quad$ CAH $\quad \cos \vartheta=\frac{\text { adjacent }}{\text { hypotenuse }}$
TOA $\tan \vartheta=\frac{\text { opposite }}{\text { adjacent }}$

We use primary trig ratios to solve for any unknown values in a right angles triangle. For example, given triangle ABC , find angle C .

$$
\begin{aligned}
& \sin C=\frac{\text { opposite side }}{\text { hypotenuse side }} \\
& \sin C=\frac{6.3}{11.3} \\
& c=\sin ^{-1}\left(\frac{6.3}{11.3}\right) \\
& C=33.9^{\circ}
\end{aligned}
$$

Given triangle DEF, find the size of side e.

$\sin F=\frac{o p p}{h y p}$
$\sin 50=\frac{4.2}{e}$
$e \sin 50=4.2$
$e=\frac{4.2}{\sin 50}$
$e=5.5 \mathrm{~m}$

Find angle J in the triangle JKL.

$$
\begin{aligned}
& \tan J=\frac{o p p}{a d j} \\
& \tan J=\frac{1.4}{2.9} \\
& J=\tan ^{-1}\left(\frac{1.4}{2.9}\right) \\
& J=25.8^{\circ}
\end{aligned}
$$

Note: To solve a triangle means to find all unknown values. Use one decimal place unless told otherwise!
\# homework assignment: Principles of Mathematics 10 p. 404 \#2, 3, 6, 8, 10, 14

