Teacher: Mrs. Roen Unit: Algebraic Models

Course: MAP 4C Lesson: 5-1 Prerequisite Skills

◆ Homework Check: none

• Note: Prerequisite Skills

A perfect square is a number that is multiplied by itself. The square root of a number is the inverse operation of squaring. Using your integer and exponent rules always applies. Recall the five exponent rules you are familiar with:

Multiplying Powers: keep the base and add the exponents **Dividing Powers:** keep the base and subtract the exponents **Power of a Power:** keep the base and multiply the exponents

Zero Exponent: any base raised to the exponent zero is equal to one **Negative Exponent:** a negative exponent means reciprocate the base

Examples:

$$4^{2} \times 4^{3} = a^{4} \times a^{7} = (-2x^{3})(3x^{5}) = a^{4+7} = (-2)(3)x^{3+5} = 1024$$

$$= a^{4} \times a^{7} = (-2)(3)x^{3+5} = -6x^{8}$$

$$\frac{4^{8}}{4^{5}} = \frac{a^{12}}{a^{5}} = \frac{88x^{4}}{-11x^{2}} =$$

$$= 4^{8-5} = a^{12-5} = \frac{88}{-11}x^{4-2}$$

$$= 4^{3} = a^{7} = -8x^{2}$$

$$(3^{2})^{3} =$$
 $= 3^{2(3)}$
 $= 3^{6}$
 $= 729$
 $(3x^{2})^{4} =$
 $= 3^{5(3)}$
 $= a^{5(3)}$
 $= 3^{4}x^{2(4)}$
 $= 81x^{8}$

$$3^{0} = a^{0} = (2x^{3})^{0} = 1$$
 $= 1$
 $= 1$

$$(x^{2})^{-4} =$$

$$= x^{-8}$$

$$= \left(\frac{1}{3}\right)^{2}$$

$$= \frac{1}{9}$$

$$(x^{2})^{-4} =$$

$$= x^{-8}$$

$$= \left(\frac{1}{x}\right)^{8}$$

$$= \frac{1}{x^{3}}$$

$$= \frac{1}{x^{3}}$$

• Homework: 5-1 Prerequisite Skills

Lesson: 5-1 Prerequisite Skills

1. Evaluate. Round to the nearest tenth when necessary. (12 marks)

a)
$$\sqrt{49} =$$

b)
$$-\sqrt{64} =$$

c)
$$\sqrt{10} =$$

d)
$$-\sqrt{81} =$$

e)
$$2\sqrt{7} =$$

f)
$$-\sqrt{9} =$$

g)
$$3\sqrt{16} =$$

h)
$$\sqrt{\frac{8}{\pi}} =$$

i)
$$\sqrt[3]{27} =$$

j)
$$2\sqrt[3]{125} =$$

k)
$$\sqrt[4]{16} =$$

1)
$$\sqrt[5]{32} =$$

- 2. The formula $T = 2\pi \sqrt{\frac{L}{9.8}}$ gives time, T seconds, for one complete swing of a pendulum with length L metres. Given each of the clock pendulum, calculate the time it takes to complete one swing. (4 marks)
- **a)** 1.3*m*

- **b)** 22*cm*
- **3.** Solve each of the following equations. Show your work.

a)
$$x-12=-5$$

b)
$$-3x = 15$$

c) 5x-3=12

(1, 1, 2)

d)
$$-3x+4=25$$

e)
$$6x - 7 = -x$$

e)
$$6x-7=-x$$
 f) $3x-11=-2x+9$

(2, 2, 2)

g)
$$2x+8=-7x-2$$

h)
$$2(x-3)+5=3x+7$$

(2, 3)

- **4.** The equation T = 10d + 20 gives the temperature, T degrees Celsius, at a depth of d kilometres below the surface of the earth. Determine the depth of a mine shaft in which the temperature is as indicated. (4 marks)
- a) 20°C

- **b**) $-15^{\circ}C$
- **5.** Evaluate each of the following. Decimal approximations will not be accepted.

a)
$$3^3 =$$

b)
$$5^3 =$$

c)
$$(-5)^2 =$$

(1, 1, 1)

d)
$$3^{-2} =$$

e)
$$8^0 =$$

$$\mathbf{f)} \ \left(\frac{1}{2}\right)^2 =$$

(2, 1, 2)

g)
$$(-7)^{-1} =$$

h)
$$\left(\frac{3}{5}\right)^{-2} =$$

i)
$$\left(\frac{2}{3}\right)^3 =$$

(1, 2, 2)

$$\mathbf{j}) \ \left(\frac{-2}{5}\right)^{-2} =$$

k)
$$-2x^0 =$$

1)
$$(-2)^{-5} =$$

(2, 1, 2)

6. Simplify and evaluate each of the following. Show your work. Decimal answers will not be accepted.

a)
$$2^3 =$$

b)
$$3^2 =$$

c)
$$(-2)^2 =$$

(1, 1, 1)

d)
$$-2^2 =$$

e)
$$4^3 =$$

f)
$$4^{-3} =$$

(1, 1, 2)

$$\mathbf{g)} \left(\frac{2}{3}\right)^2 =$$

h)
$$\left(\frac{2}{3}\right)^{-2} =$$

$$\mathbf{i)} \ \left(\frac{-2x}{3}\right)^0 =$$

(1, 2, 2)

j)
$$-3x(2x^3) =$$
 k) $4(-2x)^2 =$

$$\mathbf{k)} \quad 4\left(-2x\right)^2 =$$

1)
$$\frac{15x^6}{-3x} =$$

(2, 2, 2)